Skip to main content Accessibility help
×
Home

Instantons beyond topological theory. I

  • E. Frenkel (a1), A. Losev (a2) and N. Nekrasov (a3)

Abstract

Many quantum field theories in one, two and four dimensions possess remarkable limits in which the instantons are present, the anti-instantons are absent, and the perturbative corrections are reduced to one-loop. We analyse the corresponding models as full quantum field theories, beyond their topological sector. We show that the correlation functions of all, not only topological (or BPS), observables may be studied explicitly in these models, and the spectrum may be computed exactly. An interesting feature is that the Hamiltonian is not always diagonalizable, but may have Jordan blocks, which leads to the appearance of logarithms in the correlation functions. We also find that in the models defined on Kähler manifolds the space of states exhibits holomorphic factorization. We conclude that in dimensions two and four our theories are logarithmic conformal field theories.

In Part I we describe the class of models under study and present our results in the case of one-dimensional (quantum mechanical) models, which is quite representative and at the same time simple enough to analyse explicitly. Part II will be devoted to supersymmetric two-dimensional sigma models and four-dimensional Yang–Mills theory. In Part III we will discuss non-supersymmetric models.

Copyright

References

Hide All
1.Atiyah, M., New invariants of 3- and 4-dimensional manifolds, in The Mathematical Heritage of Hermann Weyl, Durham, NC, 1987, Proceedings of Symposia in Pure Mathematics, Volume 48, pp. 285299 (American Mathematical Society, Providence, RI, 1988).
2.Baulieu, L. and Singer, I., The topological sigma model, Commun. Math. Phys. 125 (1989), 227237.
3.Baulieu, L., Losev, A. and Nekrasov, N., Target space symmetries in topological theories, I, J. High Energy Phys. 02 (2002), 021.
4.Berkovits, N., Super Poincaré covariant quantization of the superstring, J. High Energy Phys. 04 (2000), 018.
5.Bhanot, G. and David, F., The phases of the O(3) σ-model for imaginary , Nucl. Phys. B251 (1985), 127140.
6.Bialynicki–Birula, A., Some theorems on actions of algebraic groups, Annals Math. 98 (1973), 480497.
7.Bialynicki–Birula, A., Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. 24 (1976), 667674.
8.Carrell, J. B. and Sommese, A. J., ℂ*-actions, Math. Scand. 43 (1978), 4959.
9.Cohen, R. and Norbury, P., Morse field theory, preprint (math.GT/0509681).
10.Cordes, S., Moore, G. and Ramgoolam, S., Lectures on 2D Yang–Mills theory, equivariant cohomology and topological field theory, in Géométries Fluctuantes en Mécanique Statistique et en Théorie des Champs, Les Houches, 1994, pp. 505682 (North-Holland, Amsterdam, 1996).
11.David, F., Instanton condensates in two-dimensional CPn−1 models, Phys. Lett. B138 (1984), 139144
12.Deligne, P., Griffiths, P., Morgan, J. and Sullivan, D., Real homotopy theory of Käahler manifolds, Invent. Math. 29 (1975), 245274.
13.Epstein, H. and Glaser, V., The role of locality in perturbation theory, Annales Inst. H. Poincaré 19(3) (1973), 211295.
14.Feigin, B. and Frenkel, E., Affine Kac–Moody algebras and semi-infinite flag manifolds, Commun. Math. Phys. 128 (1990), 161189.
15.Floer, A., Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989), 575611.
16.Frankel, T., Fixed points and torsion on Käahler manifolds, Annals Math. 70 (1959), 18.
17.Frenkel, E., Lectures on the Langlands Program and conformal field theory, in Frontiers in number theory, physics and geometry, Volume II (ed. Cartier, P. et al. ), pp. 387536 (Springer, 2007) (preprint: hep-th/0512172).
18.Frenkel, E. and Losev, A., Mirror symmetry in two steps: A–I–B, Commun. Math. Phys. 269 (2007), 3986 (preprint: hep-th/0505131).
19.Fukaya, K., Morse homotopy, A category and Floer homologies, preprint (available at www.math.kyoto-u.ac.jp/~fukaya/).
20.Gelfand, I. M. and Shilov, G. E., Generalized functions, Volume I (Academic Press 1964).
21.Helffer, B., Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, Volume 1336 (Springer, 1988).
22.Helffer, B. and Nier, F., Hypoelliptic estimates and spectral theory for Fokker–Planck operators and Witten Laplacians, Lecture Notes in Mathematics, Volume 1862 (Springer, 2005).
23.Hörmander, L., The analysis of linear partial differential operators, I, Distribution theory and Fourier analysis (Springer, 2003).
24.Kapustin, A., Chiral de Rham complex and the half-twisted sigma-model, preprint (hep-th/0504074).
25.Kashiwara, M. and Schapira, P., Sheaves on manifolds (Springer, 1990).
26.Kempf, G., The Grothendieck–Cousin complex of an induced representation, Adv. Math. 29 (1978), 310396.
27.Krotov, D. and Losev, A., Quantum field theory as effective BV theory from Chern–Simons, preprint (hep-th/0603201).
28.Losev, A. and Polyubin, I., Topological quantum mechanics for physicists, JETP Lett. 82 (2005), 335342.
29.Losev, A., Marshakov, A. and Zeitlin, A., On first order formalism in string theory, Phys. Lett. B 633 (2006), 375381 (preprint: hep-th/0510065).
30.Lysov, V., Anticommutativity equation in topological quantum mechanics, JETP Lett. 76 (2002), 724727.
31.Malikov, F., Schechtman, V. and Vaintrob, A., Chiral de Rham complex, Commun. Math. Phys. 204 (1999), 439473.
32.Nekrasov, N., Lectures on curved beta–gamma systems, pure spinors, and anomalies, preprint (hep-th/0511008).
33.Nekrasov, N., Seiberg–Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004), 831864.
34.Nekrasov, N. and Okounkov, A., Seiberg–Witten theory and random partitions, preprint (hep-th/0306238).
35.Schomerus, V. and Saleur, H., The GL(1|1) WZW model: from supergeometry to logarithmic CFT, Nucl. Phys. B734 (2006), 221245.
36.Schwarz, A., A-model and generalized Chern–Simons theory, Phys. Lett. B620 (2005), 180186 (preprint: hep-th/0501119).
37.Tan, M.-C., Two-dimensional twisted sigma models and the theory of chiral differential operators, Adv. Theor. Math. Phys. 10 (2006), 759851 (preprint: hep-th/0604179).
38.Witten, E., Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982), 661692.
39.Witten, E., Holomorphic Morse inequalities, in Algebraic and Differential Topology, Leipzig, 1984 (ed. Rassias, G.), Teubner-Texte zur Mathematik, Volume 70, pp. 318333 (Teubner, Leipzig, 1985).
40.Witten, E., Topological quantum field theory, Commun. Math. Phys. 117 (1988), 353386.
41.Witten, E., Topological sigma models, Commun. Math. Phys. 118 (1988), 411449.
42.Witten, E., Mirror manifolds and topological field theory, in Essays on mirror manifolds (ed. Yau, S.-T.), pp. 120158 (International Press, 1992).
43.Witten, E., Chern–Simons gauge theory as a string theory, Progr. Math. 133 (1995), 637678.
44.Witten, E., Two-dimensional models with (0, 2) supersymmetry: perturbative aspects, preprint (hep-th/0504078).
45.Witten, E., A note on the Chern–Simons and Kodama wavefunctions, preprint (gr-qc/0306083).
46.Wu, S., On the instanton complex of holomorphic Morse theory, Commun. Analysis Geom. 11 (2003), 775807.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

Instantons beyond topological theory. I

  • E. Frenkel (a1), A. Losev (a2) and N. Nekrasov (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.