Skip to main content Accessibility help


  • Pierre Clare (a1), Tyrone Crisp (a2) and Nigel Higson (a3)


Let $E$ be a (right) Hilbert module over a $C^{\ast }$ -algebra $A$ . If $E$ is equipped with a left action of a second $C^{\ast }$ -algebra $B$ , then tensor product with $E$ gives rise to a functor from the category of Hilbert $B$ -modules to the category of Hilbert $A$ -modules. The purpose of this paper is to study adjunctions between functors of this sort. We shall introduce a new kind of adjunction relation, called a local adjunction, that is weaker than the standard concept from category theory. We shall give several examples, the most important of which is the functor of parabolic induction in the tempered representation theory of real reductive groups. Each local adjunction gives rise to an ordinary adjunction of functors between categories of Hilbert space representations. In this way we shall show that the parabolic induction functor has a simultaneous left and right adjoint, namely the parabolic restriction functor constructed in Clare et al. [Parabolic induction and restriction via $C^{\ast }$ -algebras and Hilbert $C^{\ast }$ -modules, Compos. Math. FirstView (2016), 1–33, 2].



Hide All
1. Beer, W., On Morita equivalence of nuclear C -algebras, J. Pure Appl. Algebra 26(3) (1982), 249267.
2. Bernstein, J., Second adjointness for representations of reductive $p$ -adic groups. Draft:∼mitya/langlands.html, 1987.
3. Blecher, D. P., A new approach to Hilbert C -modules, Math. Ann. 307(2) (1997), 253290.
4. Blecher, D. P. and Le Merdy, C., Operator Algebras and their Modules—An Operator Space Approach, London Mathematical Society Monographs. New Series, Volume 30 (The Clarendon Press, Oxford University Press, Oxford, 2004). Oxford Science Publications.
5. Clare, P., Hilbert modules associated to parabolically induced representations, J. Operator Theory 69(2) (2013), 483509.
6. Clare, P., Crisp, T. and Higson, N., Parabolic induction and restriction via C -algebras and Hilbert C -modules, Compos. Math. FirstView (2016), 133. 2.
7. Crisp, T. and Higson, N., Parabolic induction, categories of representations and operator spaces, to appear in Operator Algebras and their Applications: A Tribute to Richard V. Kadison, Contemporary Mathematics, Volume 671, (American Mathematical Society, Providence, RI, 2016).
8. Effros, E. G. and Ruan, Z.-J., Operator Spaces, London Mathematical Society Monographs. New Series, Volume 23 (The Clarendon Press, Oxford University Press, New York, 2000).
9. Frank, M. and Kirchberg, E., On conditional expectations of finite index, J. Operator Theory 40(1) (1998), 87111.
10. Ghez, P., Lima, R. and Roberts, J. E., W -categories, Pacific J. Math. 120(1) (1985), 79109.
11. Kajiwara, T., Pinzari, C. and Watatani, Y., Jones index theory for Hilbert C -bimodules and its equivalence with conjugation theory, J. Funct. Anal. 215(1) (2004), 149.
12. Lance, E. C., Hilbert C -modules, London Mathematical Society Lecture Note Series, Volume 210 (Cambridge University Press, Cambridge, 1995). A toolkit for operator algebraists.
13. Mac Lane, S., Categories for the working mathematician, second edition, Graduate Texts in Mathematics, Volume 5 (Springer-Verlag, New York, 1998).
14. Miličić, D., Topological representation of the group C -algebra of SL(2, R), Glas. Mat. Ser. III 6(26) (1971), 231246.
15. Morita, K., Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1965), 4071. 1965.
16. Pavlov, A. A. and Troitskii, E. V., Quantization of branched coverings, Russ. J. Math. Phys. 18(3) (2011), 338352.
17. Renard, D., Représentations des groupes réductifs p-adiques, Cours Spécialisés [Specialized Courses], Volume 17 (Société Mathématique de France, Paris, 2010).
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


  • Pierre Clare (a1), Tyrone Crisp (a2) and Nigel Higson (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed