Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-07T15:12:46.953Z Has data issue: false hasContentIssue false

Well-bounded operators of type (B) in a class of Banach spaces

Published online by Cambridge University Press:  09 April 2009

Werner Ricker
Affiliation:
Centre for Mathematical AnalysisAustralian National UniversityCanberra, 2600, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that in a Grothendieck space with the Dunford-Pettis property, the class of well-bounded operators of type (B) coincides with the class of scalar-type spectral operators with real spectrum. It turns out that in such Banach spaces, analogues of the classical theorems of Hille-Sz. Nagy and Stone concerned with the integral representation of C0-semigroups of normal operators and strongly continuous unitary groups in Hilbert spaces, respectively, are of a very special nature.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Benzinger, H., Berkson, E. and Gillespie, T. A., ‘Spectral families of projections, semigroups, and differential operators’, Trans. Amer. Math. Soc. 275 (1983), 431475.CrossRefGoogle Scholar
[2]Berkson, E., ‘Semigroups of scalar-type operators and a theorem of Stone’, Illinois J. Math. 10 (1966), 345352.CrossRefGoogle Scholar
[3]Berkson, E., ‘Spectral families of projections in Hardy spaces’, J. Funct. Anal. 60 (1985), 146167.CrossRefGoogle Scholar
[4]Berkson, E. and Gillespie, T. A., ‘Absolutely continuous functions of two variables and well-bounded operators’, J. London Math. Soc. (2) 30 (1984), 305321.CrossRefGoogle Scholar
[5]Berkson, E. and Gillespie, T. A., ‘AC functions on the circle and spectral families’, J. Operator Theory 13 (1985), 3347.Google Scholar
[6]Dean, D. D., ‘Schauder decompositions in (m)’, Proc. Amer. Math. Soc. 18 (1967), 619623.Google Scholar
[7]Derndinger, R., ‘Über das Spectrum positiver Generatorem’, Math. Z. 172 (1980), 281293.CrossRefGoogle Scholar
[8]Dowson, H. R., Spectral theory of linear operators (London Math. Soc. Monograph No. 12, Academic Press, London, 1978).Google Scholar
[9]Gillespie, T. A., ‘A spectral theorem for Lp translations’, J. London Math. Soc. (2) 11 (1975), 499508.CrossRefGoogle Scholar
[10]Gillespie, T. A., ‘Boolean algebras of projections and reflexive algebras of operators’, Proc. London Math. Soc. (3) 37 (1978), 5674.CrossRefGoogle Scholar
[11]Kluvanek, I. and Knowles, G., Vector measures and control systems (North-Holland, Amsterdam, 1976).Google Scholar
[12]Lotz, H. P., ‘Tauberian theorems for operators L and similar spaces, Functional analysis: Surveys and recent results III, pp. 117133, (North-Holland Series No. 90, Amsterdam, 1984).Google Scholar
[13]Ricker, W., ‘Spectral operators of scalar-type in Grothenhdieck spaces with the Dunford-Pettis property’, Bull. London Math. Soc. 17 (1985), 268270.CrossRefGoogle Scholar
[14]Ricker, W., ‘Spectral operators and weakly compact homomorphisma in a class of Banach spaces’, Glasgow Math. J. 28 (1986), 215222.CrossRefGoogle Scholar
[15]Ringrose, J. R., ‘On well-bounded operators’, J. Austral. Math. Soc. 1 (1960), 334343.CrossRefGoogle Scholar
[16]Ringrose, J. R., ‘On well-bounded operators II’, Proc. London Math. Soc. (3) 13 (1963), 613638.CrossRefGoogle Scholar
[17]Smart, D. R., ‘Conditionally convergent spectral expansions’, J. Austral. Math. Soc. 1 (1960), 319333.CrossRefGoogle Scholar
[18]Sourour, A. R., ‘Semigroups of scalar-type operators on Banach spaces’, Trans. Amer. Math. Soc. 200 (1974), 207232.CrossRefGoogle Scholar
[19]Triggiani, R., ‘On the stabilizability problem in Banach spaces’, J. Math. Anal. Appl. 52 (1975), 383403.CrossRefGoogle Scholar
[20]Zabczyk, J., ‘A note on C 0-semigroups’, Bull. Acad. Polon. Sci. 23 (1975), 895898.Google Scholar