[1]
Betcke, T., Chandler-Wilde, S. N., Graham, I. G., Langdon, S. and Lindner, M., ‘Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation’, Numer. Methods Partial Differential Equations
27 (2011), 31–69.
[2]
van Casteren, J. A., ‘Operators similar to unitary or selfadjoint ones’, Pacific J. Math.
104(1) (1983), 241–255.
[3]
Chandler-Wilde, S. N., Graham, I. G., Langdon, S. and Lindner, M., ‘Condition number estimates for combined potential boundary integral operators in acoustic scattering’, J. Integral Equations Appl.
21 (2009), 229–279.
[4]
Daleckii, Yu. and Krein, M. G., Stability of Solutions of Differential Equations in Banach Space (American Mathematical Society, Providence, RI, 1974).
[5]
Dunford, N. and Schwartz, J. T., Linear Operators, Part I. General Theory (Wiley Interscience, New York, 1966).
[6]
Faddeev, M. M. and Shterenberg, R. G., ‘On similarity of differential operators to a selfadjoint one’, Math. Notes
72 (2002), 292–303.
[7]
Gantmakher, F. R., Theory of Matrices (Nauka, Moscow, 1967).
[8]
Gil’, M. I., Operator Functions and Localization of Spectra, Lecture Notes in Mathematics, 1830 (Springer, Berlin, 2003).
[9]
Gil’, M. I., ‘A bound for condition numbers of matrices’, Electron. J. Linear Algebra
27 (2014), 162–171.
[10]
Gil’, M. I., ‘A bound for similarity condition numbers of unbounded operators with Hilbert–Schmidt Hermitian components’, J. Aust. Math. Soc.
97 (2014), 331–342.
[11]
Gil’, M. I., ‘Resolvents of operators on tensor products of Euclidean spaces’, Linear Multilinear Algebra
64(4) (2016), 699–716.
[12]
Gil’, M. I., ‘On condition numbers of spectral operators in a Hilbert space’, Anal. Math. Phys.
5(4) (2015), 363–372.
[13]
Gil’, M. I., ‘An inequality for similarity condition numbers of unbounded operators with Schatten–von Neumann Hermitian components’, Filomat
30(13) (2016), 3415–3425.
[14]
Gil’, M. I., ‘Kronecker’s products and Kronecker’s sums of operators’, in: Contributions in Mathematics and Engineering: In Honor of Constantin Caratheodory (eds. Panos, P. and Rassias, T.) (Springer, Switzerland, 2016), 205–253.
[15]
Chen, G., Wei, Y. and Xue, Y., ‘The generalized condition numbers of bounded linear operators in Banach spaces’, J. Aust. Math. Soc.
76 (2004), 281–290.
[16]
Karabash, I. M., ‘J-selfadjoint ordinary differential operators similar to selfadjoint operators’, Methods Funct. Anal. Topology
6(2) (2000), 22–49.
[17]
Karabash, I. M., Kostenko, A. S. and Malamud, M. M., ‘The similarity problem for J-nonnegative Sturm–Liouville operators’, J. Differential Equations
246 (2009), 964–997.
[18]
Kostenko, A., ‘The similarity problem for indefinite Sturm–Liouville operators with periodic coefficients’, Oper. Matrices
5(4) (2011), 707–722.
[19]
Kostenko, A., ‘The similarity problem for indefinite Sturm–Liouville operators and the HELP inequality’, Adv. Math.
246 (2013), 368–413.
[20]
Kurbatov, V. G. and Kurbatova, I. V., ‘Extended tensor products and an operator-valued spectral mapping theorem’, Izv. Math.
79(4) (2015), 710–739.
[21]
Malamud, M. M., ‘Similarity of a triangular operator to a diagonal operator’, J. Math. Sci.
115(2) (2003), 2199–2222.
[22]
Parter, S. V. and Wong, S.-P., ‘Preconditioning second-order elliptic operators: condition numbers and the distribution of the singular values’, J. Sci. Comput.
6(2) (1991), 129–157.
[23]
Pruvost, B., ‘Analytic equivalence and similarity of operators’, Integral Equ. Oper. Theory
44 (2002), 480–493.
[24]
Seidel, M. and Silbermann, B., ‘Finite sections of band-dominated operators, norms, condition numbers and pseudospectra’, in: Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Operator Theory: Advances and Applications, 228 (eds. Karlovich, Yu. I., Rodino, L., Silbermann, B. and Spitkovsky, I. M.) (Birkhäuser/Springer, Basel, 2013), 375–390.