Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:33:22.473Z Has data issue: false hasContentIssue false

Semi-Markov processes on a general state space: α-theory and quasi-stationarity

Published online by Cambridge University Press:  09 April 2009

E. Arjas
Affiliation:
Department of Mathematics, University of British Columbia, 2075 Wesbrook Mall, Vancouver, Canada
E. Nummelin
Affiliation:
Institute of Mathematics, Helsinki University of Technology, SF-02150, Otaniemi, Finland
R. L. Tweedie
Affiliation:
Division of Mathematics and Statistics, C.S.I.R.O., P. O. Box 310, South Melbourne, Australia 3205
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By amalgamating the approaches of Tweedie (1974) and Nummelin (1977), an α-theory is developed for general semi-Markov processes. It is shown that α-transient, α-recurrent and α-positive recurrent processes can be defined, with properties analogous to those for transient, recurrent and positive recurrent processes. Limit theorems for α-positive recurrent processes follow by transforming to the probabilistic case, as in the above references: these then give results on the existence and form of quasistationary distributions, extending those of Tweedie (1975) and Nummelin (1976).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Arjas, E., Nummelin, E. and Tweedie, R. L. (1978). ‘Uniform limit theorems for non-singular renewal and Markov renewal processes’, J. Appl. Probability 15, 112125.CrossRefGoogle Scholar
Cheong, C. K. (1968), ‘Ergodie and ratio limit theorems for α-recurrent semi-Markov processes’, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9, 270286.CrossRefGoogle Scholar
Cheong, C. K. (1970), ‘Quasi-stationary distributions in semi-Markov processes’, J. Appl. Probability 7, 388399.CrossRefGoogle Scholar
Correction: J. Appl.Probability 7, 788.CrossRefGoogle Scholar
Cinlar, E. (1974), ‘Periodicity in Markov renewal theory’, Advances in Appl. Probability 6, 6178.CrossRefGoogle Scholar
Darroch, J. N. and Seneta, F. (1965), ‘On quasi-stationary distributions in absorbing discrete-time finite Marko chains’, J. Appl. Probability 2, 88100.CrossRefGoogle Scholar
Flashpohler, F. V. and Holmes, P. T. (1972). ‘Additional quasi-stationary distributions for semi-Markov processes’, J. Appl. Probability 9, 671676.CrossRefGoogle Scholar
Jacod, J. (1974). ‘Corrections et complements a l'article: “Theoreme de renouvellement et classification pour les chaines semi-markoviennes”’, Ann. Inst. H. Poincaré Sect. B 10, 201209.Google Scholar
Jain, H. and Jamison, B. (1967). ‘Contributions to Doeblin's theory of Markov processes’, Z. Wahrscheinlickeitstheorie und Verw. Gebiete 8, 1940.CrossRefGoogle Scholar
Kesten, H. (1974), ‘Renewal theory for functionals of a Markov chain with general state space’. Ann. Probability 2, 355386.CrossRefGoogle Scholar
Kingman, J. F. C. (1963), ‘The exponential decay of Markov transition probabilities’, Proc. London Math. Soc. 13, 337358.CrossRefGoogle Scholar
McDonald, D. (1978). ‘On semi-Markov and semi-regenerative processes II’. Ann. Probability 6, 9951014.CrossRefGoogle Scholar
Nummelin, E. (1976), ‘Limit theorems for α-recurrent semi-Markov processes’. Advances in Appl. Probabilty 8, 531547.CrossRefGoogle Scholar
Nummelin, E. (1977), ‘On the concepts of α-recurrence and α-transience for Markov renewal processes’. Stochastic Processes Appl. 5, 119.CrossRefGoogle Scholar
Nummelin, E. (1978), ‘Uniform and ratio limit theorems for Markov renewal and semi-regenerative processes on a general state space’. Ann. Inst. H. Poincaré Sect. B 14, 119143.Google Scholar
Revuz, D. (1975), Markov chains (North-Holland, Amsterdam).Google Scholar
Seneta, E. and Vere-Jones, D. (1966), ‘On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states’, J. Appl. Probability 3, 403434.CrossRefGoogle Scholar
Tuominen, P. (1976), ‘Notes on 1-recurrent Markov chains’, Z. Wahrscheinlickeitstheorie und Verw. Gebiete 36, 111118.CrossRefGoogle Scholar
Tweedie, R. L. (1974a), ‘R-theory for Markov chains on a general state space I: Solidarity properties and R-recurrent chains’, Ann. Probability 2, 840864.Google Scholar
Tweedie, R. L. (1974b), ‘Some ergodic properties of the Feller minimal process’, Quart. J. Math. Oxford Ser. 25, 485495.CrossRefGoogle Scholar
Tweedie, R. L. (1975), ‘Quasi-stationary distributions for Markos chains on a general state space’, J. Appl. Probability 11, 726741.CrossRefGoogle Scholar
Tweedie, R. L. (1976), ‘Criteria for classifying general Markov chains’, Advances in Appl. Probability 8, 737771.CrossRefGoogle Scholar
Vere-Jones, D. (1962). ‘Geometric ergodicity in denumerable Markov chains’, Quart. J. Math. Oxford Ser. 13, 728.CrossRefGoogle Scholar
Vere-Jones, D. (1967), ‘Ergodic properties of non-negative matrices I’, Pacific J. Math. 22, 361386.CrossRefGoogle Scholar
Vere-Jones, D. (1969). ‘Some limit theorems for evanescent processe’, Austral. J. Statist. 11, 6778.CrossRefGoogle Scholar