Skip to main content Accessibility help
×
Home

Pseudo differential operators on local Hardy spaces on chébli-teimèche hypergroups

  • Walter R. Bloom (a1) and Zengfu Xu (a2)

Abstract

In this paper we consider pseudo differential operators on local Hardy spaces hp (0 < p ≤ 1) on Chébli-Trimèche hypergroups of exponential growth.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pseudo differential operators on local Hardy spaces on chébli-teimèche hypergroups
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pseudo differential operators on local Hardy spaces on chébli-teimèche hypergroups
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pseudo differential operators on local Hardy spaces on chébli-teimèche hypergroups
      Available formats
      ×

Copyright

References

Hide All
[An]Anker, J.-Ph., ‘lp Fourier multipliers on Riemannian symmetric spaces of the noncompact type’, Ann. of Math. 132 (1990), 597628.
[AT]Achour, A. and Trimèche, K., ‘La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur (0, ∞)’, Ann. Inst. Fourier (Grenoble) 33 (1983), 203226.
[BH]Bloom, W. R. and Heyer, H., Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Math. 20 (de Gruyter, Berlin, 1995).
[BX1]Bloom, W. R. and Xu, Z., ‘The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups’, in: Applications of hypergroups and related measure algebras (Joint Summer Research Conference, Seattle, 1993), Contemporary Math. 183 (Amer. Math. Soc., Providence, 1995) pp. 4570.
[BX2]Bloom, W. R. and Xu, Z., ‘Maximal functions on Chébli-Trimèche hypergroups’, preprint.
[BX3]Bloom, W. R. and Xu, Z., ‘Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups’, Monatsh. Math. 125 (1998), 89109.
[BX4]Bloom, W. R. and Xu, Z., ‘Fourier multipliers for local Hardy spaces on Chébli-Trimèche hypergroups’, Canad. J. Math. 50 (1998), 897928.
[CV]Calderón, A. P. and Vaillancourt, R., ‘A class of bounded pseudo-differential operators’, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 11851187.
[F]Fefferman, C., ‘lp bounds for pseudo-differential operators’, Israel J. Math. 14 (1973), 413417.
[G]Goldberg, D., ‘A local version of real Hardy space’, Duke Math. J. 46 (1979), 2741.
[H]Hörmander, L., Pseudo-differential operators and hypoelliptic equations, Proc. Sympos. Pure Math. 10 (Amer. Math. Soc., Providence, 1966), 138183.
[K]Kawazoe, T., ‘Atomic Hardy spaces on semisimple Lie groups’, Japan. J. Math. 11 (1985), 293343.
[PS]Päivärinta, L. and Somersalo, E., ‘A generalization of the Calderón-Vaillancourt theorem to L p and h p’, Math. Nachr. 138 (1988), 145156.
[T1]Trimèche, K., ‘Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0, ∞)’, J. Math. Pures Appl.(9) 60 (1981), 5198.
[T2]Trimèche, K., ‘Inversion of the lions transmutation operators using generalized wavelets’, Appl. Comput. Harmon. Anal. 4 (1997), 97112.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Pseudo differential operators on local Hardy spaces on chébli-teimèche hypergroups

  • Walter R. Bloom (a1) and Zengfu Xu (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed