Skip to main content Accessibility help
×
Home

On p-adic F-functions

  • Wang Lianxiang (a1)

Abstract

We introduce the class of p-adic F-functions which contains both the p-adic E-function and p-adic G-functions, as well as other functions. In this paper we obtain lower bounds for polynomials in the values at algebraic points of a class of p-adic F-functions defined over the completion of the algebraic closure of a p-adic field.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On p-adic F-functions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On p-adic F-functions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On p-adic F-functions
      Available formats
      ×

Copyright

References

Hide All
[1]Bachman, Georg, Introduction to p-adic numbers and valuation theory (Academic Press, New York).
[2]Bundschuh, Peter and Walliser, Rolf, ‘Untere Schranken für Polynome in Werten der p-adischen Exponentialfunktion’, Math. Ann. 244 (1979), 185191.
[3]Чиρcκиг, B. Λ [V. G. Čirskii], ‘Oб aρифmetичecκиx cβ⊙йctβax зиaчehий ahaлиtичecκиx фγhkций C aлγeбρaичecκиmи иρρaци⊙haлhβmи κoзффициehτamи ρядoβ Teйлoρa’ [Arithmetic properties of the values of analytic of analytic functions with algebraic irrtional coefficients of their taylor's series], Vestnik Moskov. Univ. Ser. I Mat. Meh. (3) 133 (1978), 2934.
[4]Flicker, Y. Z., ‘On p-adic G-functions’, J. London Math. Soc. 15 (1977), 395402.
[5]Γaлoчκии, A. И. [A. I. Galochkin] лoчkhh ‘A. I. Galochkin’, ‘Oцehkи cиизγ mhoγoчлehob ot зhaчehий ahaлиtичeckиx фγhkций oдhoγo kлacca’ [Estimates from below of polynomials in the values of analytic functions of a certain class], Mat. Sb. 95 (137), 3 (11) (1974), 396417.
[6]Hecrepehko, Ю. B. ‘Ju. V. Nesterenko’ ‘Oцeheи πoρядob Hγлeй фλhkций Oдhoto kлacca и иx зpилoxehия B Teopии tpahcцehдehthиx чhceд’ [Estimates for the orders of zeros of functions of a certain class and applications in the theory of transcendental numbers], Izu. Akad. Nauk SSSR Ser. Mat. (2) 41 (1977), 253284.
[7]Ostrowski, A., ‘Sur les relations algébriques entre les integrales indefinies’, Acta Math. 78 (1946), 315318.
[8]Remmal, Salah-eddine, ‘Problèmes de transcedance lies aux E-fonctions et aux G-fonctions p-adiquesPublications Mathématiques de I'Université Pierre et Marie Curié, Groupé d'´tude suv les problemes diophantiends, 1980/1981.
[9]Щидлobckий, A. Б. [A. B. Šidlovskũ], ‘O Tpahcцehдehthoctи и aлeбpaичeckoй Heзabиcиmocth зhaчeий цeлиx фλhkций Hekotopиx kлaccob’ [Transcdence and algebraic independence of the values of entire functions of certain classes] Moskov. Gos. Univ U^. Zup. 186 (1959), 1170.
[10]Щиллobckий, A. Б., [A. B. Šidlovskũ], ‘O kpиtepии aлreбρaичeckoй heзaииcmpctи зhaчeиий oдhoto Kлacca цeлцx фλhkций’ [A criterion for algebraic independence of the values of a class of entire functions], Izu. Akad. Nauk SSSR Ser. Mat. 23 (1959), 3566, Amer. Math. Soc. Transl. (2) 22 (1962), 339–370.
[11]Šidlovskil, A. B.On the estimates of the algebraic independence measures of the values of E-functions’, J. Austral. Math. Soc. Ser. A 27 (1979), 385407.
[12]Siegel, C. L., ‘Über einige Anwendungen diophantischer Approximationen’, Abhandl. Preuss Akad. Wiss. Phys. Math. Kl (1929), No. 1, 170.
[13]Siegel, C. L., Transcendental numbers (Princeton University Press, 1949).
[14]Vaaler, J. D. and van der Poorten, A. J., ‘Bounds for solutions of systems of linear equations’, Bull. Austral. Math. Soc. 25 (1982), 125132.
[15]Waldschmidt, Michel, Nombres transcendants (Lecture Notes in Mathematics, 402, Springer-Verlag, Berlin, Heidelberg, New York, 1974).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed