Skip to main content Accessibility help
×
Home

Maximum principles for parabolic equations

  • Giovanni Porru (a1) and Salvatore Serra (a1)

Abstract

Let u(x, t) be a smooth function in the domain Q = Ω × (0, L), Ω in n, let Du be the spatial gradient of u(x, t) and let ∇u = (Du, u1). If u(x, t) satisfies the parabolic equation F(u, Du, D2u) = ut, we define w(x, t) by g(w) = │∇u−1G(∇u) (g is positive and decreasing, G is concave and homogeneous of degree one) and we prove that w(x, t) attains its maximum value on the parabolic boundary of Q. If u(x, t) satisfies the equation Δu + 2h(q2) uiujuij = ut(q2 = │Du│2, 1 + 2q2h(q2) > 0) we prove that qf (u) takes its maximum value on the parabolic boundary of Q provided f satisfies a suitable condition. If u(x, t) satisfies the parabolic equation aij (Du)uij − b(x, t, u, Du) = ut (b is concave with respect to (x, t, u)) we define C(x, y, t, τ) = u(z, θ) − αu(x, t) − βu(y, τ) (0 < α, 0 < β, α + β = 1, z αx +y, θ = αt + βτ) and we prove that if C(x, y, t, r) ≤0 when x, y, z ∈ Ω2 and one of t, τ = 0, and when t, τ ∈ (0, L], and one of x, y, z, ∈ ∂Ω, then it is C(x, y, t, τ) ≤0 everywhere.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maximum principles for parabolic equations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maximum principles for parabolic equations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maximum principles for parabolic equations
      Available formats
      ×

Copyright

References

Hide All
[1]Buttu, A., ‘An angle's maximum principle for the gradient of solutions of parabolic equations’, Boll. Un. Mat. Ital. A 2 (1988), 405408.
[2]Haraux, A., Nonlinear evolution equations-global behaviour of solutions, Lecture Notes in Math. 841 (Springer, Berlin, 1981).
[3]Henry, D., Geometric theory of semilinear parabolic equations, Lecture Notes in Math. 840 (Springer, Berlin, 1981).
[4]Kawohl, B., Rearrangements and convexity of level sets in PDE, Lecture Notes in Math. 1150 (Springer, Berlin, 1985).
[5]Korevaar, N., ‘Capillarity surface convexity above convex domains’, Indiana Univ. Math. J. 32 (1983), 7382.
[6]Korevaar, N., ‘Convex solutions to nonlinear elliptic and parabolic boundary value problems’, Indiana Univ. Math. J. 32 (1983), 603614.
[7]Payne, L. P. and Philippin, G. A., ‘On some maximum principles involving harmonic functions and their derivatives’, SIAM J. Math. Anal. 10 (1979), 96104.
[8]Philippin, G. A., ‘On a free boundary problem in electrostatic’, Math. Methods Appl. Sci. 12 (1990), 387392.
[9]Philippin, G. A. and Payne, L. P., ‘On the conformal capacity problem’, Sympos. Math. 30 (1989), 119136.
[10]Porru, G. and Ragnedda, F., ‘Convexity properties for solutions of some second order elliptic semilinear equations’, Appi. Anal. 37 (1990), 118.
[11]Protter, M. H. and Weinberger, H. F., Maximum principles in differential equations (PrenticeHall, Englewood Cuffs, 1967).
[12]Pucci, C., ‘An angle's maximum principle for the gradient of solutions of elliptic equations’, Boll. Un. Mat. Ital. A 1 (1987), 135139.
[13]>Pucci, C., ‘A maximum principle related to level surfaces of solutions of parabolic equations’, J. Austral. Math. Soc. (Series A) 46 (1989), 17.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Related content

Powered by UNSILO

Maximum principles for parabolic equations

  • Giovanni Porru (a1) and Salvatore Serra (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.