Skip to main content Accessibility help
×
Home

HARDY SPACES ON METRIC MEASURE SPACES WITH GENERALIZED SUB-GAUSSIAN HEAT KERNEL ESTIMATES

  • LI CHEN (a1)

Abstract

Hardy space theory has been studied on manifolds or metric measure spaces equipped with either Gaussian or sub-Gaussian heat kernel behaviour. However, there are natural examples where one finds a mix of both behaviours (locally Gaussian and at infinity sub-Gaussian), in which case the previous theory does not apply. Still we define molecular and square function Hardy spaces using appropriate scaling, and we show that they agree with Lebesgue spaces in some range. Besides, counterexamples are given in this setting that the $H^{p}$ space corresponding to Gaussian estimates may not coincide with $L^{p}$ . As a motivation for this theory, we show that the Riesz transform maps our Hardy space $H^{1}$ into $L^{1}$ .

Copyright

References

Hide All
[1] Amenta, A., ‘Tent spaces over metric measure spaces under doubling and related assumptions’, in: Operator Theory in Harmonic and Non-Commutative Analysis, Operator Theory: Advances and Applications, 240 (Birkhäuser/Springer, Cham, 2014), 129.
[2] Auscher, P., ‘On necessary and sufficient conditions for L p -estimates of Riesz transforms associated to elliptic operators on ℝ n and related estimates’, Mem. Amer. Math. Soc. 186(871) (2007), xviii+75.
[3] Auscher, P., Hofmann, S. and Martell, J.-M., ‘Vertical versus conical square functions’, Trans. Amer. Math. Soc. 364(10) (2012), 54695489.
[4] Auscher, P., McIntosh, A. and Morris, A., ‘Calderón reproducing formulas and applications to Hardy spaces’, Rev. Mat. Iberoam. 31(3) (2015), 865900.
[5] Auscher, P., McIntosh, A. and Russ, E., ‘Hardy spaces of differential forms on Riemannian manifolds’, J. Geom. Anal. 18(1) (2008), 192248.
[6] Bakry, D. and Émery, M., ‘Diffusions hypercontractives’, in: Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Mathematics, 1123 (Springer, Berlin, 1985), 177206.
[7] Barlow, M. T., ‘Which values of the volume growth and escape time exponent are possible for a graph?’, Rev. Mat. Iberoam. 20(1) (2004), 131.
[8] Barlow, M. T., ‘Analysis on the Sierpinski carpet’, in: Analysis and Geometry of Metric Measure Spaces, CRM Proceedings and Lecture Notes, 56 (American Mathematical Society, Providence, RI, 2013), 2753.
[9] Barlow, M. T. and Bass, R. F., ‘Stability of parabolic Harnack inequalities’, Trans. Amer. Math. Soc. 356(4) (2004), 15011533.
[10] Barlow, M. T., Coulhon, T. and Grigor’yan, A., ‘Manifolds and graphs with slow heat kernel decay’, Invent. Math. 144(3) (2001), 609649.
[11] Bergh, J. and Löfström, J., Interpolation Spaces. An Introduction, Grundlehren der mathematischen Wissenschaften, 223 (Springer, Berlin, 1976).
[12] Blunck, S., ‘Generalized Gaussian estimates and Riesz means of Schrödinger groups’, J. Aust. Math. Soc. 82(2) (2007), 149162.
[13] Blunck, S. and Kunstmann, P. C., ‘Generalized Gaussian estimates and the legendre transform’, J. Operator Theory 53(2) (2005), 351365.
[14] Chen, L., Coulhon, T., Feneuil, J. and Russ, E., ‘Riesz transform for 1 ≤ p ≤ 2 without Gaussian heat kernel bound’, J. Geom. Anal. 27(2) (2017), 14891514.
[15] Chen, P., Duong, X. T., Li, J., Ward, L. A. and Yan, L. X., ‘Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type’, Math. Z. 282 (2016), 10331065.
[16] Coifman, R. R., Meyer, Y. and Stein, E. M., ‘Some new function spaces and their applications to harmonic analysis’, J. Funct. Anal. 62(2) (1985), 304335.
[17] Coifman, R. R. and Weiss, G., Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, 242 (Springer, Berlin, 1971).
[18] Coifman, R. R. and Weiss, G., ‘Extensions of Hardy spaces and their use in analysis’, Bull. Amer. Math. Soc. 83(4) (1977), 569645.
[19] Coulhon, T., ‘Dimension à l’infini d’un semi-groupe analytique’, Bull. Sci. Math. 114(4) (1990), 485500.
[20] Coulhon, T. and Sikora, A., ‘Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem’, Proc. Lond. Math. Soc. (3) 96(2) (2008), 507544.
[21] Cowling, M., Doust, I., McIntosh, A. and Yagi, A., ‘Banach space operators with a bounded H functional calculus’, J. Aust. Math. Soc. Ser. A 60(1) (1996), 5189.
[22] Duong, X. T. and McIntosh, A., ‘Singular integral operators with non-smooth kernels on irregular domains’, Rev. Mat. Iberoam. 15(2) (1999), 233265.
[23] Fefferman, C. and Stein, E. M., ‘ H p spaces of several variables’, Acta Math. 129(3–4) (1972), 137193.
[24] Feneuil, J., ‘Riesz transform on graphs under subgaussian estimates’, Preprint, 2015, arXiv:1505.07001.
[25] Feneuil, J., ‘Hardy and BMO spaces on graphs, application to Riesz transform’, Potential Anal. 45(1) (2016), 154.
[26] Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, 249 (Springer, New York, 2008).
[27] Grigor’yan, A., Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, 47 (American Mathematical Society, Providence, RI, 2009).
[28] Gyrya, P. and Saloff-Coste, L., ‘Neumann and Dirichlet heat kernels in inner uniform domains’, Astérisque 336 (2011), viii+144.
[29] Hebisch, W. and Saloff-Coste, L., ‘On the relation between elliptic and parabolic Harnack inequalities’, Ann. Inst. Fourier (Grenoble) 51(5) (2001), 14371481.
[30] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M. and Yan, L., ‘Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates’, Mem. Amer. Math. Soc. 214(1007) (2011), vi+78.
[31] Hofmann, S. and Martell, J. M., ‘ L p bounds for Riesz transforms and square roots associated to second order elliptic operators’, Publ. Mat. 47(2) (2003), 497515.
[32] Hofmann, S. and Mayboroda, S., ‘Hardy and BMO spaces associated to divergence form elliptic operators’, Math. Ann. 344(1) (2009), 37116.
[33] Kunstmann, P. C. and Uhl, M., ‘Spectral multiplier theorems of Hörmander type on Hardy and Lebesgue spaces’, J. Operator Theory 73(1) (2015), 2769.
[34] Li, P., Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134 (Cambridge University Press, Cambridge, 2012).
[35] Russ, E., ‘The atomic decomposition for tent spaces on spaces of homogeneous type’, in: CMA/AMSI Research Symposium ‘Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics’, Proceedings of the Centre for Mathematics and its Applications, Australian National University, 42 (Australian National University, Canberra, 2007), 125135.
[36] Stein, E. M., Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, Annals of Mathematics Studies, 63 (Princeton University Press, Princeton, NJ, 1970).
[37] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43 (Princeton University Press, Princeton, NJ, 1993).
[38] Sturm, K.-T., ‘Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p -Liouville properties’, J. reine angew. Math. 456 (1994), 173196.
[39] Sturm, K.-T., ‘Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations’, Osaka J. Math. 32(2) (1995), 275312.
[40] Uhl, M., ‘Spectral multiplier theorems of Hörmander type via generalized Gaussian estimates’, PhD Thesis, Karlsruher Institut für Technologie (KIT), 2011.
[41] Varopoulos, N. Th., ‘Long range estimates for Markov chains’, Bull. Sci. Math. (2) 109(3) (1985), 225252.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

HARDY SPACES ON METRIC MEASURE SPACES WITH GENERALIZED SUB-GAUSSIAN HEAT KERNEL ESTIMATES

  • LI CHEN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.