Skip to main content Accessibility help
×
Home

GRAPH PRODUCTS AND THE ABSENCE OF PROPERTY (AR)

  • NICOLAI STAMMEIER (a1)

Abstract

We discuss the internal structure of graph products of right LCM semigroups and prove that there is an abundance of examples without property (AR). Thereby we provide the first examples of right LCM semigroups lacking this seemingly common feature. The results are particularly sharp for right-angled Artin monoids.

Copyright

References

Hide All
[1] Afsar, Z., Brownlowe, N., Larsen, N. S. and Nicolai, S., ‘Equilibrium states on right LCM semigroup $C^{\ast }$ -algebras’, Int. Math. Res. Not. IMRN, to appear, Preprint, 2016, arXiv:1611.01052.
[2] Brownlowe, N., an Huef, A., Laca, M. and Raeburn, I., ‘Boundary quotients of the Toeplitz algebra of the affine semigroup over the natural numbers’, Ergodic Theory Dynam. Systems 32(1) (2012), 3562; doi:10.1017/S0143385710000830.
[3] Brownlowe, N., Larsen, N. S. and Stammeier, N., ‘On C -algebras associated to right LCM semigroups’, Trans. Amer. Math. Soc. 369(1) (2017), 3168; doi:10.1090/tran/6638.
[4] Brownlowe, N., Larsen, N. S. and Stammeier, N., ‘ $C^{\ast }$ -algebras of algebraic dynamical systems and right LCM semigroups’, Indiana Univ. Math. J., to appear, available as IUMJ/Preprints/7527.
[5] Brownlowe, N., Ramagge, J., Robertson, D. and Whittaker, M. F., ‘Zappa–Szép products of semigroups and their C -algebras’, J. Funct. Anal. 266(6) (2014), 39373967; doi:10.1016/j.jfa.2013.12.025.
[6] Brownlowe, N. and Stammeier, N., ‘The boundary quotient for algebraic dynamical systems’, J. Math. Anal. Appl. 438(2) (2016), 772789; doi:10.1016/j.jmaa.2016.02.015.
[7] Charney, R., ‘An introduction to right-angled Artin groups’, Geom. Dedicata 125 (2007), 141158; doi:10.1007/s10711-007-9148-6.
[8] Clark, L. O., an Huef, A. and Raeburn, I., ‘Phase transitions on the Toeplitz algebras of Baumslag–Solitar semigroups’, Indiana Univ. Math. J. 65(6) (2016), 21372173; doi:10.1512/iumj.2016.65.5934.
[9] Crisp, J. and Laca, M., ‘On the Toeplitz algebras of right-angled and finite-type Artin groups’, J. Aust. Math. Soc. 72(2) (2002), 223245; doi:10.1017/S1446788700003876.
[10] Crisp, J. and Laca, M., ‘Boundary quotients and ideals of Toeplitz C -algebras of Artin groups’, J. Funct. Anal. 242(1) (2007), 127156; doi:10.1016/j.jfa.2006.08.001.
[11] Diekert, V., Combinatorics on Traces, Lecture Notes in Computer Science, 454 (Springer, Berlin, 1990), with a foreword by Wilfried Brauer.
[12] Eilers, S., Li, X. and Ruiz, E., ‘The isomorphism problem for semigroup C -algebras of right-angled Artin monoids’, Doc. Math. 21 (2016), 309343; electronic version.
[13] Exel, R. and Pardo, E., ‘The tight groupoid of an inverse semigroup’, Semigroup Forum 92(1) (2016), 274303; doi:10.1007/s00233-015-9758-5.
[14] Exel, R. and Pardo, E., ‘Self-similar graphs, a unified treatment of Katsura and Nekrashevych C -algebras’, Adv. Math. 306(1) (2017), 10461129; doi:10.1016/j.aim.2016.10.030.
[15] Fountain, J. and Kambites, M., ‘Graph products of right cancellative monoids’, J. Aust. Math. Soc. 87(2) (2009), 227252; doi:10.1017/S144678870900010X.
[16] Green, E. R., Graph Products of Groups (University of Leeds, 1990).
[17] Laca, M. and Raeburn, I., ‘Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers’, Adv. Math. 225(2) (2010), 643688; doi:10.1016/j.aim.2010.03.007.
[18] Laca, M., Raeburn, I. and Ramagge, J., ‘Phase transition on Exel crossed products associated to dilation matrices’, J. Funct. Anal. 261(12) (2011), 36333664; doi:10.1016/j.jfa.2011.08.015.
[19] Laca, M., Raeburn, I., Ramagge, J. and Whittaker, M. F., ‘Equilibrium states on the Cuntz–Pimsner algebras of self-similar actions’, J. Funct. Anal. 266(11) (2014), 66196661; doi:10.1016/j.jfa.2014.03.003.
[20] Li, X., ‘Semigroup C -algebras and amenability of semigroups’, J. Funct. Anal. 262(10) (2012), 43024340; doi:10.1016/j.jfa.2012.02.020.
[21] Li, X., ‘Nuclearity of semigroup C -algebras and the connection to amenability’, Adv. Math. 244 (2013), 626662; doi:10.1016/j.aim.2013.05.016.
[22] Spielberg, J., ‘ C -algebras for categories of paths associated to the Baumslag–Solitar groups’, J. Lond. Math. Soc. (2) 86(3) (2012), 728754; doi:10.1112/jlms/jds025.
[23] Stammeier, N., ‘A boundary quotient diagram for right LCM semigroups’, Semigroup Forum (2017), 116; doi:10.1007/s00233-017-9850-0.
[24] Starling, C., ‘Boundary quotients of C -algebras of right LCM semigroups’, J. Funct. Anal. 268(11) (2015), 33263356; doi:10.1016/j.jfa.2015.01.001.
[25] Steinberg, B., ‘Simplicity, primitivity and semiprimitivity of étale groupoid algebras with applications to inverse semigroup algebras’, J. Pure Appl. Algebra 220(3) (2016), 10351054; doi:10.1016/j.jpaa.2015.08.006.
[26] Veloso da Costa, A., ‘Graph products of monoids’, Semigroup Forum 63(2) (2001), 247277; doi:10.1007/s002330010075.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

GRAPH PRODUCTS AND THE ABSENCE OF PROPERTY (AR)

  • NICOLAI STAMMEIER (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.