Skip to main content Accessibility help
×
×
Home

Free algebras in varieties of BL-algebras generated by a BLn-chain

  • Manuela Busaniche (a1) and Roberto Cignoli (a1)
Abstract

Free algebras with an arbitrary number of free generators in varieties of BL-algebras generated by one BL-chain that is an ordinal sum of a finite MV-chain Ln, and a generalized BL-chain B are described in terms of weak Boolean products of BL-algebras that are ordinal sums of subalgebras of Ln, and free algebras in the variety of basic hoops generated by B. The Boolean products are taken over the Stone spaces of the Boolean subalgebras of idempotents of free algebras in the variety of MV-algebras generated by Ln.

2000 Mathematics subject classification: primary 03G25, 03B50, 03B52, 03D35, 03G25, 08B20.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Free algebras in varieties of BL-algebras generated by a BLn-chain
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Free algebras in varieties of BL-algebras generated by a BLn-chain
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Free algebras in varieties of BL-algebras generated by a BLn-chain
      Available formats
      ×
Copyright
References
Hide All
[1]Aglianò, P., Ferreirim, I. M. A. and Montagna, F., ‘Basic hoops: An algebraic study of continuous t-norms’, manuscript.
[2]Aglianó, P. and Montagna, F., ‘Varieties of BL-algebras I: General properties’, J. Pure Appl. Algebra 181 (2003), 105129.
[3]Amer, K., ‘Equationally complete classes of conmutative monoids with monus’, Algebra Universalis 18 (1984), 129131.
[4]Balbes, R. and Dwinger, P.. Distributive lattices (University of Missoury Press. Columbia, 1974).
[5]Bigelow, D. and Burris, S., ‘Boolean algebras of factor congruences’, Acta Sci. Math. (Szeged) 54 (1990), 1120.
[6]Block, W. J. and Ferreinim, I. M. A., ‘Hoops and their implicational reducts (Abstract)’, in: Algebraic Methods in Logic and Computer Sciences, Banach Center Publications 28 (Polish Academy of Science, Warsaw, 1993) pp. 219230.
[7]Block, W. J. and Ferreinim, I. M. A., ‘On the structure of hoops’, Algebra Universalis 43 (2000), 233257.
[8]Boicescu, V., Filipoiu, A., Georgescu, G. and Rudeanu, S., Lukasiewicz-Moisil algebras (Elsevier, Amsterdam, 1991).
[9]Burris, S. and Sankappanavar, H. P., A course in universal algebra (Springer, New York, 1981).
[10]Busaniche, M., ‘Free algebras in varieties of BL-algebras generated by a chain’, Algebra Universalis 50 (2003), 259277.
[11]Cignoli, R., Moisil algebras, Notas de lógica matemática (Instituto De Matemática, Universidad Nac. del Sur, Bahía Blanca, Argentina, 1970).
[12]Cignoli, R., Some algebraic aspects of many-valued logics’, in: Proceedings of the third Brazilian Conference on Mathematical Logic (Sociedade Brasileira de Lógica) (eds. Arruda, A. I., Costa, N. C. A. da and Sette, A. M.) (Sāo Paulo, 1980) pp. 4969.
[13]Cignoli, R., ‘Proper n-valued łukasiewicz algebras as S-algebras of łukasiewicz n-valued propositional calculi’, Studia Logica 41 (1982), 316.
[14]Cignoli, R., D'Ottaviano, M. I. and Mundici, D., Algebraic foundations of many-valued reasoning (Kluwer, Dordrecht, 2000).
[15]Cignoli, R. and Torrens, A., ‘An algebraic analysis of product logic’, Mult.- Valued Log. 5 (2000), 4565.
[16]Cignoli, R. and Torrens, A., ‘Free cancelative hoops’, Algebra Universalis 43 (2000), 213216.
[17]Cignoli, R. and Torrens, A., ‘Free algebras in varieties of BL-algebras with a Boolean retract’, Algebra Universalis 48 (2002), 5579.
[18]Cignoli, R. and Torrens, A., ‘Hájek basic fuzzy logic and łukasiewicz infinite-valued logic’, Arch. Math. Logic 42 (2003), 361370.
[19]Hájek, P., Metamathematics of fuzzy logic (Kluwer, Dordrecht, 1998).
[20]Horn, A., ‘Free L-algebras’, J. Symbolic Logic 34 (1969), 475480.
[21]Iorgulescu, A., ‘Connections between MVn-algebras and n-valued łukasiewicz-moisil algebras Part I’, Discrete Math. 181 (1998), 155177.
[22]McNaughton, R., ‘A theorem about infinite-valued sentential logic’, J. Symbolic Logic 16 (1951), 113.
[23]Nola, A. Di, Georgescu, G. and Leustean, L., ‘Boolean products of BL-algebras’, J. Math. Anal. Appl. 251 (2000). 106131.
[24]Rodríguez, A. J. and Torrens, A., ‘Wajsberg algebras and post algebras’, Studia Logica 53 (1994), 119.
[25]von Plato, J., ‘Skolem's discovery of Gödel-Dummett logic’, Studia Logica 73 (2003), 153157.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of the Australian Mathematical Society
  • ISSN: 1446-7887
  • EISSN: 1446-8107
  • URL: /core/journals/journal-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed