Skip to main content Accessibility help
×
Home

CONGRUENCES MODULO 5 AND 7 FOR 4-COLORED GENERALIZED FROBENIUS PARTITIONS

  • HENG HUAT CHAN (a1), LIUQUAN WANG (a2) and YIFAN YANG (a3)

Abstract

Let $c\unicode[STIX]{x1D719}_{k}(n)$ denote the number of $k$ -colored generalized Frobenius partitions of $n$ . Recently, new Ramanujan-type congruences associated with $c\unicode[STIX]{x1D719}_{4}(n)$ were discovered. In this article, we discuss two approaches in proving such congruences using the theory of modular forms. Our methods allow us to prove congruences such as $c\unicode[STIX]{x1D719}_{4}(14n+6)\equiv 0\;\text{mod}\;7$ and Seller’s congruence $c\unicode[STIX]{x1D719}_{4}(10n+6)\equiv 0\;\text{mod}\;5$ .

Copyright

Corresponding author

References

Hide All
[1] Andrews, G. E., Generalized Frobenius Partitions, Memoirs of the American Mathematical Society, 301 (American Mathematical Society, Providence, RI, 1984).
[2] Baruah, N. D. and Sarmah, B. K., ‘Congruences for generalized Frobenius partitions with 4 colors’, Discrete Math. 311 (2011), 18921902.
[3] Berndt, B. C., Number Theory in the Spirit of Ramanujan (American Mathematical Society, Providence, RI, 2006).
[4] Bruinier, J. H., van der Geer, G., Harder, G. and Zagier, D., The 1-2-3 of Modular Forms (Springer, Berlin–Heidelberg, 2008).
[5] Chan, H. H. and Chua, K. S., ‘Representations of integers as sums of 32 squares’, Ramanujan J. 7 (2003), 7989.
[6] Chan, H. H. and Lewis, R. P., ‘Partition identities and congruences associated with the Fourier coefficients of the Euler products’, J. Comput. Appl. Math. 160 (2003), 6975.
[7] Diamond, F. and Shurman, J., A First Course in Modular Forms (Springer, New York, 2005).
[8] Eichhorn, D. and Ono, K., ‘Congruences for partition functions’, in: Proc. Conf. in Honor of Heini Halbertstam, Vol. 1 (Birkhäuser, Boston, 1996), 309321.
[9] Hirschhorn, M. D. and Sellers, J. A., ‘Arithmetic relations for overpartitions’, J. Combin. Math. Combin. Comput. 53 (2005), 6573.
[10] Koblitz, N., Introduction to Elliptic Curves and Modular Forms (Springer, New York, 1984).
[11] Lin, B. L. S., ‘New Ramanujan type congruences modulo 7 for 4-colored generalized Frobenius partitions’, Int. J. Number Theory 10 (2014), 637639.
[12] Ono, K., The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series, CBMS Regional Conference Series in Mathematics, Vol. 102 (American Mathematical Society, Providence, RI, 2004).
[13] Rankin, R. A., Modular Forms and Functions (Cambridge University Press, Cambridge, 1977).
[14] Sellers, J. A., ‘An unexpected congruence modulo 5 for 4-colored generalized Frobenius partitions’, J. Indian Math. Soc. (2013), 97103; Special volume to commemorate the 125th birth anniversary of Srinivasa Ramanujan.
[15] Sturm, J., On the Congruence of Modular Forms, Springer Lecture Notes in Mathematics, 1240 (Springer, Berlin–New York, 1984), 275280.
[16] Treneer, S., ‘Congruences for the coefficients of weakly holomorphic modular forms’, Proc. Lond. Math. Soc. 93 (2006), 304324.
[17] Wang, L., ‘Another proof of a conjecture by Hirschhorn and Sellers on overpartitions’, J. Integer Seq. 17 (2014), Article 14.9.8.
[18] Wang, L., ‘New congruences for partitions where the odd parts are distinct’, J. Integer Seq. 18 (2015), Article 15.4.2.
[19] Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis, 4th edn (Cambridge University Press, Cambridge, 1966).
[20] Zhang, W. and Wang, C., ‘An unexpected Ramanujan-type congruence modulo 7 for 4-colored generalized Frobenius partitions’, Ramanujan J., doi:10.1007/s11139-015-9770-0.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed