Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T17:22:40.287Z Has data issue: false hasContentIssue false

Composition operators in Orlicz spaces

Published online by Cambridge University Press:  09 April 2009

Yunan Cui
Affiliation:
Department of Mathematics, Harbin University of Sciences and Technology, 52 Xuefu Road, Nanang. Dist. Harbin, Heilongjiang 150080, P. R. of China e-mail: cuiya@mail.hrbust.edu.cn
Henryk Hudzik
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz UniversityUmultowska 87, 61–614 Poznan, Poland, e-mail: hudzik@amu.edu.pl
Romesh Kumar
Affiliation:
Department of Mathematics University of JammuJammu-180 004, India e-mail: romesh_jammu@yahoo.com
Lech Maligranda
Affiliation:
Department of Mathematics Luleå University of TechnologySE-97187 Luleå, Sweden e-mail: lech@sm.luth.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Composition operators Cτ between Orlicz spaces Lϕ (Ω, Σ, μ) generated by measurable and nonsingular transformations τ from Ω into itself are considered. We characterize boundedness and compactness of the composition operator between Orlicz spaces in terms of properties of the mapping τ, the function ϕ and the measure space (Ω, Σ, μ). These results generalize earlier results known for Lp-spaces.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Bennett, C. and Sharpley, R., Interpolation of operators (Academic Press, London, 1988).Google Scholar
[2]Chen, S., Geometry of Orlicz spaces, Dissertationes Math. (Rozprawy Mat.) 356 (PWN, Warsaw, 1996).Google Scholar
[3]Drewnowski, L. and Orlicz, W., ‘A note on modular spaces. XI’, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 877882.Google Scholar
[4]Dunford, N. and Schwartz, J. T., Linear operators, I. General theory (Interscience, New York, 1958).Google Scholar
[5]Hudzik, H. and Maligranda, L., ‘Amemiya norm equals Orlicz norm in general’, Indag. Math. N. S. 11 (2000), 573585.CrossRefGoogle Scholar
[6]Ishii, J., ‘On equivalence of modular function spaces’, Proc. Japan Acad. 35 (1959), 551556.Google Scholar
[7]Krasnoselskii, M. A. and Rutickii, Ya. B., Convex functions and Orlicz spaces (Noordhoff, Groningen, 1961).Google Scholar
[8]Krein, S. G., Petunin, Ju. I. and Semenov, E. M., Interpolation of linear operators, Translations of Mathematical Monographs 54 (Amer. Math. Soc., Providence, 1982).Google Scholar
[9]Kumar, R., ‘Composition operators on Orlicz spaces’, Integral Equations Operator Theory 29 (1997), 1722.CrossRefGoogle Scholar
[10]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces II. Function spaces (Springer, Berlin, 1979).CrossRefGoogle Scholar
[11]Maligranda, L., Orlicz spaces and interpolation, Seminars in Math. 5 (Univ. Estadual de Campinas, Campinas SP, Brazil, 1989).Google Scholar
[12]Maligranda, L., ‘Some remarks on Orlicz's interpolation theorem’, Studia Math. 95 (1989), 4358.CrossRefGoogle Scholar
[13]Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034 (Springer, Berlin, 1983).CrossRefGoogle Scholar
[14]Ovchinnikov, V. I., ‘The methods of orbits in interpolation theory’, Math. Rep. 1 (1984), 349516.Google Scholar
[15]Petrović, S., ‘A note on composition operators’, Mat. Vesnik 40 (1988), 147151.Google Scholar
[16]Rao, M. M., ‘Convolutions of vector fields-II: random walk models’, Nonlinear Anal., Theory Methods Appl. 47 (2001), 35993615.CrossRefGoogle Scholar
[17]Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces (Marcel Dekker, New York, 1991).Google Scholar
[18]Shragin, I. V., ‘The operator of superposition in modular function spaces’, Studia Math. 43 (1972), 6175 (Russian).Google Scholar
[19]Shragin, I. V., ‘Conditions for the imbedding of classes of sequences, and their consequences’, Mat. Zametki 20 (1976), 681692;Google Scholar
English translation: Math. Notes 20 (1976), 942948 (1977).CrossRefGoogle Scholar
[20]Singh, R. K., ‘Compact and quasinormal composition operators’, Proc. Amer. Math. Soc. 45 (1974), 8082.CrossRefGoogle Scholar
[21]Singh, R. K., ‘Composition operators induced by rational functions’, Proc. Amer. Math. Soc. 59 (1976), 329333.CrossRefGoogle Scholar
[22]Singh, R. K. and Kumar, R. D. Chandra, ‘Compact weighted composition operators on L 2(λ)’, Acta Sci. Math. (Szeged) 49 (1985), 339344.Google Scholar
[23]Singh, R. K. and Komal, B. S., ‘Composition operator on ℓp and its adjoint’, Proc. Amer. Math. Soc. 70 (1978), 2125.Google Scholar
[24]Singh, R. K. and Kumar, A., ‘Compact composition operators’, J. Austral. Math. Soc. Ser. A 28 (1979), 309314.CrossRefGoogle Scholar
[25]Singh, R. K. and Manhas, J. S., Composition operators on function spaces, North-Holland Math. Studies 179 (North-Holland, Amsterdam, 1993).Google Scholar
[26]Takagi, H., ‘Compact weighted composition operators on Lp’, Proc. Amer. Math. Soc. 116 (1992), 505511.Google Scholar
[27]Takagi, H. and Yokouchi, K., ‘Multiplication and composition operators between two Lp -spaces’, in: Function spaces, Edwardsville, IL, 1998, Contemp. Math. 232 (Amer. Math. Soc., Providence 1999) pp. 321338.Google Scholar
[28]Xu, X. M., ‘Compact composition operators on Lp (X, A, μ)’, Adv. in Math. (China) (2) 20 (1991), 221225 (Chinese).Google Scholar