[1]
Bloom, D. M., ‘The subgroups of PSL(3, *q*) for odd *q*
’, Trans. Amer. Math. Soc.
127 (1967), 150–178.

[2]
Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput.
24 (1997), 235–265.

[3]
Cameron, P. J., ‘Finite permutation groups and finite simple groups’, Bull. Lond. Math. Soc.
13 (1981), 1–22.

[4]
Cameron, P. J. and Kantor, W. M., ‘2-Transitive and antiflag transitive collineation groups of finite projective spaces’, J. Algebra
60 (1979), 384–422.

[5]
Conder, M. D. E. and Ma, J., ‘Arc-transitive abelian regular covers of cubic graphs’, J. Algebra
387 (2013), 215–242.

[6]
Conder, M. D. E. and Ma, J., ‘Arc-transitive abelian regular covers of the Heawood graph’, J. Algebra
387 (2013), 243–267.

[7]
Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups (Clarendon Press, Oxford, 1985).

[8]
Du, S. F., Kwak, J. H. and Xu, M. Y., ‘On 2-arc-transitive covers of complete graphs with covering transformation group ℤ_{
p
}
^{3}
’, J. Combin. Theory B
93 (2005), 73–93.

[9]
Du, S. F., Malnič, A. and Marušič, D., ‘Classification of 2-arc-transitive dihedrants’, J. Combin. Theory B
98 (2008), 1349–1372.

[10]
Du, S. F., Marušič, D. and Waller, A. O., ‘On 2-arc-transitive covers of complete graphs’, J. Combin. Theory B
74 (1998), 276–290.

[11]
Du, S. F. and Xu, M. Y., ‘A classification of semisymmetric graphs of order 2*pq*
’, Comm. Algebra
28 (2000), 2685–2715.

[12]
Fang, X. G., Havas, G. and Praeger, C. E., ‘On the automorphism groups of quasiprimitive almost simple graphs’, J. Algebra
222 (1999), 271–283.

[13]
Fang, X. G. and Praeger, C. E., ‘Finite two-arc-transitive graphs admitting a Suzuki simple group’, Comm. Algebra
27 (1999), 3727–3754.

[14]
Gardiner, A. and Praeger, C. E., ‘Topological covers of complete graphs’, Math. Proc. Cambridge Philos. Soc.
123 (1998), 549–559.

[15]
Godsil, C. D. and Hensel, A. D., ‘Distance regular covers of the complete graph’, J. Combin. Theory B
56 (1992), 205–238.

[16]
Godsil, C. D., Liebler, R. A. and Praeger, C. E., ‘Antiposal distance transitive covers of complete graphs’, European J. Combin.
19 (1992), 455–478.

[17]
Gross, J. L. and Tucker, T. W., ‘Generating all graph coverings by permutation voltage assignments’, Discrete Math.
18 (1977), 273–283.

[18]
Gross, J. L. and Tucker, T. W., Topological Graph Theory (Wiley-Interscience, New York, 1987).

[19]
Hall, M. and Senior, J. K., The Groups of Order 2^{
n
} (*n* ≤ 6) (Macmillan, New York, 1964).

[20]
Huppert, B., Endliche Gruppen I (Springer, Berlin, 1967).

[21]
Ivanov, A. A. and Praeger, C. E., ‘On finite affine 2-arc-transitive graphs’, European J. Combin.
14 (1993), 421–444.

[22]
Li, C. H., ‘On finite *s*-transitive graphs of odd order’, J. Combin. Theory B
81 (2001), 307–317.

[23]
Li, C. H., ‘The finite vertex-primitive and vertex-biprimitive *s*-transitive graphs for *s* ≥ 4’, Trans. Amer. Math. Soc.
353 (2001), 3511–3529.

[24]
Lorimer, P., ‘Vertex-transitive graphs: symmetric graphs of prime valency’, J. Graph Theory
8 (1984), 55–68.

[25]
Malnič, A., ‘Group actions, coverings and lifts of automorphisms’, Discrete Math.
182 (1998), 203–218.

[26]
Marušič, D., ‘On 2-arc-transitivity of Cayley graphs’, J. Combin. Theory B
87 (2003), 162–196.

[27]
Mortimer, B., ‘The modular permutation representations of the known doubly transitive groups’, Proc. Lond. Math. Soc.
41 (1980), 1–20.

[28]
Praeger, C. E., ‘An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc-transitive graphs’, J. Lond. Math. Soc.
47 (1993), 227–239.

[29]
Praeger, C. E., ‘On a reduction theorem for finite, bipartite, 2-arc-transitive graphs’, Australas. J. Combin.
7 (1993), 21–36.

[30]
Wang, F. R. and Zhang, L., ‘Elementary Abelian regular coverings of cube’, Int. J. Math. Combin.
1 (2011), 49–58.

[31]
Xu, W. Q. and Du, S. F., ‘2-arc-transitive cyclic covers of *K*
_{
n, n
} - *nK*
_{2}
’, J. Algebraic Combin.
39 (2014), 883–902.

[32]
Xu, W. Q., Du, S. F., Kwak, J. H. and Xu, M. Y., ‘2-arc-transitive metacyclic covers of complete graphs’, J. Combin. Theory B
111 (2015), 54–74.

[33]
Xu, W. Q., Zhu, Y. H. and Du, S. F., ‘2-arc-transitive regular covers of *K*
_{
n, n
} - *nK*
_{2} with the covering transformation group ℤ_{
p
}
^{2}
’, Ars Math. Contemp.
10 (2016), 269–280.