[2]
Brattka, V., Gherardi, G., and Hölzl, R.,
*Probabilistic computability and choice*
. Information and Computation, vol. 242 (2015), pp. 249–286.

[3]
Brattka, V. and Rakotoniaina, T., **
***On the Uniform Computational Content of Ramsey’s Theorem*
, submitted.

[4]
Cholak, P. A., Jockusch, C. G., and Slaman, T. A.,
*On the strength of Ramsey’s theorem for pairs*
, this JOURNAL, vol. 66 (2001), no. 1, pp. 1–55.

[5]
Chong, C. T., Lempp, S., and Yang, Y.,
*On the role of the collection principle for*
${\rm{\Sigma }}_2^0$
*-formulas in second-order reverse mathematics*
. Proceedings of the American Mathematical Society, vol. 138 (2010), no. 3, pp. 1093–1100.
[6]
Chong, C. T., Slaman, T. A., and Yang, Y.,
*The metamathematics of stable Ramsey’s theorem for pairs*
. Journal of the American Mathematical Society, vol. 27 (2014), no. 3, pp. 863–892.

[7]
Dorais, F. G., Dzhafarov, D. D., Hirst, J. L., Mileti, J. R., and Shafer, P.,
*On uniform relationships between combinatorial problems*
. Transactions of the American Mathematical Society, vol. 368 (2016), no. 2, pp. 1321–1359.

[8]
Downey, R. G. and Hirschfeldt, D. R., Algorithmic randomness and complexity, Theory and Applications of Computability, Springer, New York, 2010.

[9]
Dzhafarov, D. D.,
*Cohesive avoidance and strong reductions*
. Proceedings of the American Mathematical Society, vol. 143 (2015), no. 2, pp. 869–876.

[11]
Dzhafarov, D. D., Patey, L., Solomon, R., and Westrick, L. B.. *Ramsey’s theorem for singletons and strong computable reducibility*, to appear.

[12]
Hirschfeldt, D. R., Slicing the Truth: On the Computable and Reverse Mathematics of Combinatorial Principles, Lecture Notes Series/Institute for Mathematical Sciences, National University of Singapore, World Scientific Publishing Company Incorporated, New York, 2014.

[13]
Hirschfeldt, D. R. and Jockusch, C. G. Jr., *On notions of computability theoretic reduction between*
${\rm{\Pi }}_2^1$
*principles*, to appear.
[14]
Hirschfeldt, D. R., Jockusch, C. G. Jr., Kjos-Hanssen, B., Lempp, S., and Slaman, T. A., The *strength of some combinatorial principles related to Ramsey’s theorem for pairs*
, Computational Prospects of Infinity. Part II. Presented Talks, Lecture Notes Series/Institute for Mathematical Sciences, National University of Singapore, vol. 15, World Scientific Publishing Company Incorporated, Hackensack, NJ, 2008, pp. 143–161.

[15]
Hirschfeldt, D. R. and Shore, R. A., *Combinatorial principles weaker than Ramsey’s theorem for pairs*, this JOURNAL, vol. 72 (2007), no. 1, pp. 171–206.

[16]
Jockusch, C. G. Jr., *Ramsey’s theorem and recursion theory*, this JOURNAL, vol. 37 (1972), pp. 268–280.

[17]
Jockusch, C. G., *Degrees of generic sets*, Recursion Theory: Its Generalisation and Applications (Proc. Logic Colloq., Univ. Leeds, Leeds, 1979), London Mathematical Society Lecture Note Series, vol. 45, Cambridge University Press, Cambridge, 1980, pp. 110–139.

[18]
Mileti, J. R., **
***Partition Theorems and Computability Theory*
, Ph.D thesis, University of Illinois at Urbana-Champaign, 2004.

[19]
Montalbán, A.,
*Open questions in reverse mathematics*
. Bulletin of Symbolic Logic, vol. 17 (2011), no. 3, pp. 431–454.

[20]
Patey, L., *The weakness of being cohesive, thin or free in reverse mathematics*, submitted.

[21]
Rakotoniaina, T., **
***The Computational Strength of Ramsey’s Theorem*
, Ph.D thesis, University of Cepe Town, 2015.

[22]
Seetapun, D. and Slaman, T. A.,
*On the strength of Ramsey’s theorem*
. Notre Dame Journal of Formal Logic, vol. 36 (1995), no. 4, pp. 570–582.

[23]
Shore, R. A.,
*Lecture notes on turing degrees*
, Computational Prospects of Infinity II: AII Graduate Summer School, Lecture Notes Series/Institute for Mathematical Sciences, National University of Singapore, World Scientific Publishing Company Incorporated, Hackensack, NJ, to appear.

[24]
Simpson, S. G.,
*Degrees of unsolvability: A survey of results*
, Handbook of Mathematical Logic (Barwise, J., editor), North-Holland, Amsterdam, 1977, pp. 631–652.

[25]
Simpson, S. G., Subsystems of second order arithmetic, second ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.

[26]
Soare, R. I., **
***Computability theory and applications*
, Theory and Applications of Computability, Springer, New York, to appear.

[27]
Weihrauch, K., **
***The Degrees of Discontinuity of Some Translators Between Representations of the Real Numbers*
, Informatik-Berichte 129, FernUniversität Hagen, 1992.