Skip to main content Accessibility help
×
Home

On metric types that are definable in an o-minimal structure

  • Guillaume Valette (a1)

Abstract

In this paper we study the metric spaces that are definable in a polynomially bounded o-minimal structure. We prove that the family of metric spaces definable in a given polynomially bounded o-minimal structure is characterized by the valuation field Λ of the structure. In the last section we prove that the cardinality of this family is that of Λ. In particular these two results answer a conjecture given in [SS] about the countability of the metric types of analytic germs. The proof is a mixture of geometry and model theory.

Copyright

References

Hide All
[BCR1]Bochnak, J., Coste, M., and Roy, M-F., Géométrie Algébrique Réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 12, Springer-Verlag, 1987.
[BCR2]Bochnak, J., Coste, M., and Roy, M-F., Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36, Springer-Verlag, 1998.
[C]Coste, M., An introduction to o-minimal geometry, Dottorato di Ricerca in Matematica, Dip. Mat. Univ. Pisa, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.
[vD]van den Dries, L., Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998.
[vD-M]van den Dries, L. and Miller, C., Geometric categories and o-minimal structures, Duke Mathematical Journal, vol. 84 (1996), no. 2, pp. 497540.
[vD-S]van den Dries, L. and Speissegger, P., O-minimal preparation theorems, to appear.
[Ma]Marker, D., Model theory. An introduction, Graduate Texts in Mathematics, 217, Springer-Verlag, New York, 2002.
[M]Mostowski, T., Lipschitz equisingularity, Dissertationes Mathematicae (Rozprawy Matematyczne), vol. 243, 1985, 46 pp.
[N]Nowak, K., A proof of the valuation property for polynomialy bounded o-minimal strucutres, preprint.
[P1]Parusiński, A., Lipschitz properties of semi-analytic sets, Université de Grenoble, Annates de l'Institut Fourier, vol. 38 (1988), no. 4, pp. 189213.
[P2]Parusiński, A., Lipschitz stratification of subanalytic sets, Annates Scientifiques de l'Ecole Normale Supérieure. Quatrième Série, vol. 27 (1994), no. 6, pp. 661696.
[SS]Siebenmann, L. and Sullivan, D., On complexes that are Lipschitz manifolds, Proceedings of the Georgia Topology Conference, Athens, Ga., 1977, Geometric topology, Academic Press, New York-London, 1979, pp. 503525.
[V1]Valette, G., A bi-Lipschitz version of Hardt's theorem, Comptes Rendu de l'Académic des Sciences, Paris, vol. 340 (2005), no. 12, pp. 895900.
[V2]Valette, G., Lipschitz triangulations, Illinois Journal of Mathematics, to appear.

Related content

Powered by UNSILO

On metric types that are definable in an o-minimal structure

  • Guillaume Valette (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.