Skip to main content Accessibility help
×
Home

On effective topological spaces

  • Dieter Spreen (a1)

Abstract

Starting with D. Scott's work on the mathematical foundations of programming language semantics, interest in topology has grown up in theoretical computer science, under the slogan ‘open sets are semidecidable properties’. But whereas on effectively given Scott domains all such properties are also open, this is no longer true in general. In this paper a characterization of effectively given topological spaces is presented that says which semidecidable sets are open.

This result has important consequences. Not only follows the classical Rice-Shapiro Theorem and its generalization to effectively given Scott domains, but also a recursion theoretic characterization of the canonical topology of effectively given metric spaces. Moreover, it implies some well known theorems on the effective continuity of effective operators such as P. Young and the author's general result which in its turn entails the theorems by Myhill-Shepherdson, Kreisel-Lacombe-Shoenfield and Ceĭtin-Moschovakis, and a result by Eršov and Berger which says that the hereditarily effective operations coincide with the hereditarily effective total continuous functionals on the natural numbers.

Copyright

References

Hide All
[1]Beeson, M. J., The unprovability in intuitionistic formal systems of theorems on the continuity of effective operations, this Journal, vol. 40 (1975), pp. 321346.
[2]Beeson, M. J., The nonderivability in intuitionistic formal systems of the continuity of effective operations on the reals, this Journal, vol. 41 (1976), pp. 1824.
[3]Beeson, M. J., Continuity and comprehension in intuitionistic formal systems, Pacific Journal of Mathematics, vol. 68 (1977), pp. 2940.
[4]Beeson, M. J. and Ščedrov, A., Church's thesis, continuity, and set theory, this Journal, vol. 49 (1984), pp. 630643.
[5]Berger, U., Total sets and objects in domain theory, Annals of Pure and Applied Logic, vol. 60 (1993), pp. 91117.
[6]Bourbaki, N., Elements of mathematics, General topology, Part 1, Hermann, Paris, 1966.
[7]Ceĭtin, G. S., Algorithmic operators in constructive metric spaces, Trudy Matematiki Instituta Steklov, vol. 67 (1962), pp. 295361, English translation: American Mathematical Society Translations, series 2, vol. 64, 1967, pp. 1–80.
[8]Czászár, A., Foundations of general topology, Pergamon, New York, 1963.
[9]de Barker, J. W. and Zucker, J. I., Processes and the denotational semantics of concurrency, Information and Control, vol. 54 (1982), pp. 70120.
[10]Egli, H. and Constable, R. L., Computability concepts for programming language semantics, Theoretical Computer Science, vol. 2 (1976), pp. 133145.
[11]Eršov, Ju. L., Computable functionals of finite type, Algebra i Logika, vol. 11 (1972), pp. 367437, English translation: Algebra and Logic, vol. 11, 1972, pp. 203–242.
[12]Eršov, Ju. L., Theorie der Numerierungen I, Zeitschrift für mathematische Logik Grundlagen der Mathematik, vol. 19 (1973), pp. 289388.
[13]Eršov, Ju. L., The theory of A-spaces, Algebra i Logika, vol. 12 (1973), pp. 369416, English translation: Algebra and Logic, vol. 12, 1973, pp. 209–232.
[14]Eršov, Ju. L., Theorie der Numerierungen II, Zeitschrift für mathematische Logik Grundlagen der Mathematik, vol. 21 (1975), pp. 473584.
[15]Eršov, Ju. L., Heriditarily effective operations, Algebra i Logika, vol. 15 (1976), pp. 642654, English translation: Algebra and Logic, vol. 15 (1976), pp. 400–409.
[16]Eršov, Ju. L., Model ℂ of partial continuous functionals, Logic colloquium 76 (Gandy, R.et al., editors), North-Holland, Amsterdam, 1977, pp. 455467.
[17]Fletcher, P. and Lindgren, W. F., Quasi-uniform spaces, Dekker, New York, 1982.
[18]Friedberg, R., Un contre-exemple relatif aux fonctionelles récursives, Comptes Rendus de l'Académie des Sciences, vol. 247 (1958), pp. 852854.
[19]Giannini, P. and Longo, G., Effectively given domains and lambda-calculus models, Information and Control, vol. 62 (1984), pp. 3663.
[20]Gierz, G., Hofmann, K. H., Keimel, K., Lawson, D. J., Mislove, M., and Scott, D. S., A compendium on continuous lattices, Springer-Verlag, Berlin, 1980.
[21]Helm, J., On effectively computable operators, Zeitschrift für mathematische Logik Grundlagen der Mathematik, vol. 17 (1971), pp. 231244.
[22]Kreisel, G., Lacombe, D., and Shoenfield, J., Partial recursive functionals and effective operations, Constructivity in mathematics (Heyting, A., editor), North-Holland, Amsterdam, 1959, pp. 290297.
[23]Lachlan, A., Effective operators in a general setting, this Journal, vol. 29 (1964), pp. 163178.
[24]Mal'cev, A. I., The metamathematics of algebraic systems, Collected papers: 1936–1967, (Wells, B. F. III, editor), North-Holland, Amsterdam, 1971.
[25]Melton, A., Topological spaces for cpos, Categorical methods in computer science (Ehrig, H.et al., editors), Lecture Notes in Computer Science, no. 393, Springer-Verlag, Berlin, 1989, pp. 302314.
[26]Moschovakis, Y. N., Recursive analysis, Ph. D. thesis, University of Wisconsin, Madison, Wisconsin, 1963.
[27]Moschovakis, Y. N., Recursive metric spaces, Fundamenta Mathematicae, vol. 55 (1964), pp. 215238.
[28]Myhill, J. and Shepherdson, J. C., Effective operators on partial recursive functions, Zeitschrift für mathematische Logik Grundlagen der Mathematik, vol. 1 (1955), pp. 310317.
[29]Nivat, M., Infinite words, infinite trees, infinite computations, Foundations of computer science III, Part 2 (de Bakker, J. W.et al., editors), Mathematical Centre Tracts, no. 109, 1979, pp. 152.
[30]Nogina, E. Ju., Relations between certain classes of effectively topological spaces, Matematicheskie Zametki, vol. 5 (1969), pp. 483495, English translation: Mathematical Notes, vol. 5, 1969, pp. 288–294.
[31]Pour-El, M. B., A comparison of five ‘computable' operators, Zeitschrift für mathematische Logik Grundlagen der Mathematik, vol. 6 (1960), pp. 325340.
[32]Rogers, H. Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.
[33]Sciore, E. and Tang, A., Computability theory in admissible domains, 10th annual ACM symposium on theory of computing, Association of Computing Machinery, New York, 1978, pp. 95104.
[34]Scott, D., Outline of a mathematical theory of computation, Technical monograph PRG-2, Oxford University Computing Laboratory, 1970.
[35]Scott, D., Continuous lattices, Toposes, algebraic geometry and logic (Bucur, I.et al., editors), Lecture Notes in Mathematics, no. 274, Springer-Verlag, Berlin, 1971, pp. 97136.
[36]Scott, D., Domains for denotational semantics, Automata, languages and programming (Nielsen, M.et al., editors), Lecture Notes in Computer Science, no. 140, Springer-Verlag, Berlin, 1982, pp. 577613.
[37]Smyth, M. B., Power domains and predicate transformers, Automata, languages and programming (Diaz, J., editor), Lecture Notes in Computer Science, no. 154, Springer-Verlag, Berlin, 1983, pp. 662675.
[38]Smyth, M. B., Finite approximation of spaces, Category theory and computer programming (Pittet, D.et al., editors), Lecture Notes in Computer Science, no. 240, Springer-Verlag, Berlin, 1986, pp. 225241.
[39]Smyth, M. B., Quasi-uniformities: reconciling domains with metric spaces, Mathematical foundations of programming language semantics, 3rd workshop (Main, M.et al., editors), Lecture Notes in Computer Science, no. 298, Springer-Verlag, Berlin, 1988, pp. 236253.
[40]Smyth, M. B., Completeness of quasi-uniform spaces and syntopological spaces, Journal of the London Mathematical Society, vol. 49 (1994), pp. 385400.
[41]Spreen, D., On domains witnessing increase in information, in preparation, 199?
[42]Spreen, D., On some decision problems in programming, Information and Computation, vol. 122 (1995), pp. 120139.
[43]Spreen, D., Effective inseparability in a topological setting, Annals of Pure and Applied Logic, vol. 80 (1996), pp. 257275.
[44]Spreen, D. and Young, P., Effective operators in a topological setting, Computation and proof theory, Part II (Richter, M. M.et al., editors), Lecture Notes in Mathematics, no. 1104, Springer-Verlag, Berlin, 1984, Proceedings of Logic Colloquium Aachen 1983, pp. 437451.
[45]Stoltenberg-Hansen, V., Lindström, I., and Griffor, E. R., Mathematical theory of domains, Cambridge University Press, Cambridge, 1994.
[46]Weihrauch, K., Computability, Springer-Verlag, Berlin, 1987.
[47]Weihrauch, K. and Deil, T., Berechenbarkeit auf cpo's, Schriften zur Angewandten Mathematik und Informatik, no. 63, Rheinisch-Westfälische Technische Hochschule Aachen, 1980.
[48]Young, P., An effective operator, continuous but not partial recursive, Proceedings of the American Mathematical Society, vol. 19 (1968), pp. 103108.
[49]Young, P. and Collins, W., Discontinuities of provably correct operators on the provably recursive real numbers, this Journal, vol. 48 (1983), pp. 913920.

Related content

Powered by UNSILO

On effective topological spaces

  • Dieter Spreen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.