[1]
Badouel, E., Chenou, J., and Guillou, G., An axiomatization of the token game based on Petri algebras, Fundamenta Informaticae, vol. 77 (2007), no. 3, pp. 187–215.

[2]
Beck, M. and Robins, S., Computing the continuous discretely, Undergraduate Texts in Mathematics, Springer, 2007.

[3]
Beck, M., Sam, S. V., and Woods, K. M., Maximal periods of (Ehrhart) quasi-polynomials, Journal of Combinatorial Theory. Series A, vol. 115 (2008), no. 3, pp. 517–525.

[4]
Beynon, W. M., Duality theorems for finitely generated vector lattices, Proceedings of the London Mathematical Society, vol. 31 (1975), no. 3, pp. 114–128.

[5]
Bigard, A., Keimel, K., and Wolfenstein, S., Groupes et anneaux réticulés, Lecture Notes in Mathematics, Volume 608, Springer, 1977.

[6]
Blok, W. J. and Ferreirim, I. M. A., On the structure of hoops, Algebra Universalis, vol. 43 (2000), no. 2–3, pp. 233–257.

[8]
Cignoli, R., D'Ottaviano, I., and Mundici, D., Algebraic foundations of many-valued reasoning, Trends in logic, vol. 7, Kluwer, 2000.

[9]
Dvurečenskij, A., Subdirectly irreducible state-morphism BL-algebras, Archive for Mathematical Logic, vol. 50 (2011), no. 1–2, pp. 145–160.

[10]
Engelking, R., Dimension theory, North-Holland, 1978.

[11]
Esteva, F., Godo, L., Hájek, P., and Montagna, F., Hoops and fuzzy logic, Journal of Logic and Computation, vol. 13 (2003), no. 4, pp. 531–555.

[12]
Ewald, G., Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, vol. 168, Springer, 1996.

[13]
Fedel, M., Keimel, K., Montagna, F., and Roth, W., Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic, Forum Mathematicum, vol. 25 (2013), no. 2, pp. 405–441.

[14]
Goodearl, K. R., Partially ordered abelian groups with interpolation, American Mathematical Society, Providence, RI, 1986.

[15]
Hájek, P., Metamathematics of fuzzy logic, Trends in Logic, vol. 4, Kluwer, 1998.

[16]
Hurewicz, W. and Wallman, H., Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941.

[17]
Kokorin, A. I. and Kopytov, V. M., Fully ordered groups, Wiley, 1974.

[18]
Kroupa, T., Every state on semisimple MV-algebra is integral, Fuzzy Sets and Systems, vol. 157 (2006), no. 20, pp. 2771–2782.

[19]
Kuipers, L. and Niederreiter, H., Uniform distribution of sequences, Dover, New York, 2006, First published in 1974 by Wiley-Interscience.

[20]
Marra, V., The Lebesgue state of a unital abelian lattice-ordered group. II, Journal of Group Theory, vol. 12 (2009), no. 6, pp. 911–922.

[21]
Metcalfe, G., Olivetti, N., and Gabbay, D., Proof theory for fuzzy logics, Applied Logic Series, vol. 36, Springer, 2009.

[22]
Mundici, D., Averaging the truth-value in Łukasiewicz logic, Studia Logica, vol. 55 (1995), no. 1, pp. 113–127.

[23]
Mundici, D., The Haar theorem for lattice-ordered abelian groups with order-unit, Discrete and Continuous Dynamical Systems, vol. 21 (2008), no. 2, pp. 537–549.

[24]
Mundici, D., Advanced Łukasiewicz calculus and MV-algebras, Trends in Logic, Studia Logica Library, vol. 35, Springer, 2011.

[25]
Murty, M. R., Problems in analytic number theory, Graduate Texts in Mathematics, vol. 206, Springer, 2001.

[26]
Panti, G., The automorphism group of falsum-free product logic, Algebraic and proof-theoretic aspects of non-classical logics (Aguzzoli, S.
et al., editors), Lecture Notes in Artificial Intelligence, vol. 4460, Springer, 2007, pp. 275–289.

[27]
Panti, G., Invariant measures in free MV-algebras, Communications in Algebra, vol. 36 (2008), no. 8, pp. 2849–2861.

[28]
Panti, G., Denominator-preserving maps, Aequationes Mathematicae, vol. 84 (2012), no. 1–2, pp. 13–25.

[29]
Rourke, C. P. and Sanderson, B. J., Introduction topiecewise-linear topology, Springer, 1972.

[30]
Rudin, W., Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987.

[31]
Stanley, R. P., Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, 1997, corrected reprint of the 1986 original.

[32]
Stein, P., Classroom Notes: A Note on the Volume of a Simplex, The American Mathematical Monthly, vol. 73 (1966), no. 3, pp. 299–301.

[33]
Yosida, K., On the representation of the vector lattice, Proceedings of the Imperial Academy of Tokyo, vol. 18 (1942), pp. 339–342.

[34]
Ziegler, G. M., Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer, 1995.