[1] Ash, C. J. and Knight, J. F., Computable structures and the hyperarithmetical hierarchy, Elsevier, 2000.

[2] Calvert, W., Algebraic structure and computable structure, PhD Dissertation, University of Notre Dame, 2005.

[3] Calvert, W., Cenzer, D., Harizanov, V., and Morozov, A., Effective categoricity of equivalence structures, Annals of Pure and Applied Logic, vol. 141 (2006), pp. 61–78.

[4] Calvert, W., Cummins, D., Knight, J. F., and Miller, S., Comparing classes of finite structures, Algebra and Logic, vol. 43 (2004), pp. 374–392.

[5] Calvert, W., Knight, J., and Millar, J., Computable trees of Scott rank ω^{CK} and computable approximations, this Journal, vol. 71 (2006), pp. 283–298.

[6] Carson, J., Fokina, E., Harizanov, V. S., Knight, J. F., Quinn, S., Safranski, C., and Wallbaum, J., *Computable embedding problem*, submitted.

[7] Cenzer, D., Harizanov, V., and Remmel, J., and equivalence structures, Computability in Europe, 2009, Lecture Notes in Computer Science, vol. 5635, 2009, pp. 99–108. [8] Downey, R. and Montalban, A., The isomorphism problem for torsion-free Abelian groups is analytic complete, Journal of Algebra, vol. 320 (2008), pp. 2291–2300.

[9] Fokina, E. and Friedman, S., Equivalence relations on classes of computable structures, Computability in Europe, 2009, Lecture Notes in Computer Science, vol. 5635, 2009, pp. 198–207.

[10] Fokina, E., *equivalence relations on ω*, submitted. [11] Fokina, E., Friedman, S., and Törnquist, A., The effective theory of Borel equivalence relations, Annals of Pure and Applied Logic, vol. 161 (2010), pp. 837–850.

[12] Fokina, E., Knight, J., Melnikov, A., Quinn, S., and Safranski, C., Ulm type, and coding rankhomogeneous trees in other structures, this Journal, vol. 76 (2011), pp. 846–869.

[13] Friedman, H. and Stanley, L., A Borel reducibility theory for classes of countable structures, this Journal, vol. 54 (1989), pp. 894–914.

[14] Friedman, S. D. and Ros, L. Motto, Analytic equivalence relations and bi-embeddability, this Journal, vol. 76 (2011), pp. 243–266.

[15] Gao, S., Invariant descriptive set theory, Pure and Applied Mathematics, CRC Press/Chapman & Hall, 2009.

[16] Goncharov, S. S. and Knight, J. F., Computable structure and non-structure theorems, Algebra and Logic, vol. 41 (2002), pp. 351–373, English translation.

[17] Harrison, J., Recursive pseudo well-orderings, Transactions of the American Mathematical Society, vol. 131 (1968), pp. 526–543.

[18] Hjorth, G., The isomorphism relation on countable torsion-free Abelian groups, Fundamenta Mathematica, vol. 175 (2002), pp. 241–257.

[19] Kanovei, V., Borel equivalence relations. Structure and classification, University Lecture Series 44, American Mathematical Society, 2008.

[20] Kaplansky, I., Infinite Abelian groups, University of Michigan Press, Ann Arbor, 1954.

[21] Kechris, A., New directions in descriptive set theory, The Bulletin of Symbolic Logic, vol. 5 (1999), no. 2, pp. 161–174.

[22] Kechris, A. and Louveau, A., The classification of hypersmooth Borel equivalence relations, Journal of the American Mathematical Society, vol. 10 (1997), no. 1, pp. 215–242.

[23] Khoussainov, B., Stephan, F., and Yang, Y., Computable categoricity and the Ershov hierarchy, Annals of Pure and Applied Logic, vol. 156 (2008), pp. 86–95.

[24] Knight, J. F., Quinn, S. Miller, and Boom, M. Vanden, Turing computable embeddings, this Journal, vol. 73 (2007), pp. 901–918.

[25] Louveau, A. and Rosendal, C., Complete analytic equivalence relations, Transactions of the American Mathematical Society, vol. 357 (2005), no. 12, pp. 4839–4866.

[26] Montalbán, A., On the equimorphism types of linear orderings, The Bulletin of Symbolic Logic, vol. 13 (2007), pp. 71–99.

[27] Rogers, H., Theory of recursive functions and effective computability, McGraw-Hill, 1967.

[28] Rogers, L., Ulm's theorem for partially ordered structures related to simply presented Abelian p-groups, Transactions of the American Mathematical Society, vol. 227 (1977), pp. 333–343.