Skip to main content Accessibility help

Invariance Properties of Almost Disjoint Families

  • M. Arciga-Alejandre (a1), M. Hrušák (a2) and C. Martinez-Ranero (a3)


We answer a question of Garcia-Ferreira and Hrušák by consistently constructing a MAD family maximal in the Katětov order. We also answer several questions of Garcia-Ferreira.



Hide All
[1] Bartoszyński, T. and Judah, H., Set theory, on the structure of the real line, AK Peters, Wellesley, MA, 1995.
[2] Blass, A., Combinatorial cardinal characteristics of the continuum, Handbook of set theory (Foreman, Matthew and Kanamori, Akihiro, editors), vol. 1, Springer, 2010, pp. 395489.
[3] Brendle, J., Spinas, O., and Zhang, Y., Uniformity of the meager ideal and maximal cofinitary groups, Journal of Algebra, vol. 232 (2000), pp. 209225.
[4] Brendle, J. and Yatabe, S., Forcing indestructibility of MAD families, Annals of Pure and Applied Logic, vol. 132 (2005), no. 2–3, pp. 271312.
[5] Cameron, P., Cofinitary permutation groups, Bulletin of the London Mathematical Society, vol. 28 (1996), no. 2, pp. 113140.
[6] Garcia-Ferreira, S., Continuous functions between Isbell-Mrowka spaces, Commentationes Mathematicae Universitatis Carolinae, vol. 39 (1998), pp. 185195.
[7] Garcia-Ferreira, S. and Hrušak, M., Ordering MAD families a la Katětov, this Journal, vol. 68 (2003), no. 4, pp. 13371353.
[8] Garcia-Ferreira, S. and Szeptycki, P., MAD families and P-points, Commentationes Mathematicae Universitatis Carolinae, vol. 48 (2007), no. 4, pp. 699705.
[9] Hrušák, M., Steprans, J., and Zhang, Y., Cofinitary groups, almost disjoint and dominating families, this Journal, vol. 66 (2001), no. 3, pp. 12591276.
[10] Hrušák, M. and Zapletal, J., Forcing with quotients, Archive for Mathematical Logic, vol. 47 (2008), no. 7–8, pp. 719739.
[11] Kastermans, B., Steprans, J., and Zhang, Y., Analytic and coanalytic families of almost disjoint functions, this Journal, vol. 73 (2008), no. 4, pp. 11581172.
[12] Raghavan, D. and Steprans, J., On weakly tight families, preprint, 2012.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed