Skip to main content Accessibility help

Coding true arithmetic in the Medvedev and Muchnik degrees

  • Paul Shafer (a1)


We prove that the first-order theory of the Medvedev degrees, the first-order theory of the Muchnik degrees, and the third-order theory of true arithmetic are pairwise recursively isomorphic (obtained independently by Lewis, Nies, and Sorbi [7]). We then restrict our attention to the degrees of closed sets and prove that the following theories are pairwise recursively isomorphic: the first-order theory of the closed Medvedev degrees, the first-order theory of the compact Medvedev degrees, the first-order theory of the closed Muchnik degrees, the first-order theory of the compact Muchnik degrees, and the second-order theory of true arithmetic. Our coding methods also prove that neither the closed Medvedev degrees nor the compact Medvedev degrees are elementarily equivalent to either the closed Muchnik degrees or the compact Muchnik degrees.



Hide All
[1]Bianchini, Caterina and Sorbi, Andrea, A note on closed degrees of difficulty of the Medvedev lattice, Mathematical Logic Quarterly, vol. 42 (1996), no. 1, pp. 127133.
[2]Dyment, Elena Z., Certain properties of the Medvedev lattice, Mathematics of the USSR Sbornik, vol. 30 (1976), pp. 321340.
[3]Dyment, Elena Z., Exact bounds ofdenumerable collections of degrees of difficulty, Matematicheskie Zametki, vol. 28 (1980), no. 6, pp. 899910.
[4]Hodges, Wilfrid, A shorter model theory, Cambridge University Press, 1997.
[5]Jankov, V. A., The calculus of the weak law of excluded middle, Mathematics of the USSR-Izvestiya, vol. 2 (1968), no. 5, pp. 9971004.
[6]Lerman, Manuel, Degrees of unsolvability, Springer-Verlag, 1983.
[7]Lewis, Andrew E. M., Nies, André, and Sorbi, Andrea, The first order theories of the Medvedev and Muchnik lattices, 5th Conference on Computability in Europe, CiE 2009 (Ambos-Spies, Klaus, Löwe, Benedikt, and Merkle, Wolfgang, editors), Lecture Notes in Computer Science, vol. 5635, Springer, 2009, pp. 324331.
[8]Lewis, Andrew E. M., Shore, Richard A., and Sorbi, Andrea, Topological aspects of the Medvedev lattice, to appear.
[9]Medvedev, Yuri T., Degrees of difficulty of the mass problems, Doklady Akademii Nauk SSSR (NS), vol. 104, 1955, pp. 501504.
[10]Medvedev, Yuri T., Finite problems, Doklady Akademii Nauk SSSR (NS), vol. 142, 1962, pp. 10151018.
[11]Muchnik, Albert A., On strongandweak reducibilities of algorithmic problems, Sibirskii Matematkheskii Zhurnal, vol. 4 (1963), pp. 13281341.
[12]Nies, André, Shore, Richard A., and Slaman, Theodore A., Interpretability and definability in the recursively enumerable degrees, Proceedings of the London Mathematical Society, vol. 77 (1998), no. 02, pp. 241291.
[13]Shafer, Paul, Characterizing the join-irreducible Medvedev degrees, Notre Dame Journal of Formal Logic, to appear.
[14]Shore, Richard A., The theory of the degrees below 0′, Journal of the London Mathematical Society, vol. 24 (1981), pp. 114.
[15]Simpson, Stephen G., First-order theory of the degrees of recursive unsolvability, Annals of Mathematics, vol. 105 (1977), no. 1, pp. 121139.
[16]Simpson, Stephen G., Subsystems of second order arithmetic, Cambridge University Press, 2009.
[17]Skvortsova, Elena Z., A faithful interpretation of the intuitionistic propositional calculus by means of an initial segment of the Medvedev lattice, Sibirskii Matematicheskii Zhurnal, vol. 29 (1988), no. 1, pp. 171178.
[18]Soare, Robert I., Recursively enumerable sets and degrees, Springer-Verlag, 1987.
[19]Sorbi, Andrea, Some remarks on the algebraic structure of the Medvedev lattice, this Journal, vol. 55 (1990), no. 2, pp. 831853.
[20]Sorbi, Andrea, Embedding Brouwer algebras in the Medvedev lattice, Notre Dame Journal of Formal Logic, vol. 32 (1991), no. 2, pp. 266275.
[21]Sorbi, Andrea, Some quotient lattices of the Medvedev lattice, Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, vol. 37 (1991), no. 9–12, pp. 167182.
[22]Sorbi, Andrea, The Medvedev lattice of degrees of difficulty, Computability, enumerability, unsolvability: Directions in recursion theory (Cooper, S. B., Slaman, T. A., and Wainer, S. S., editors), London Mathematical Society Lecture Notes, vol. 224, Cambridge University Press, 1996, pp. 289312.
[23]Sorbi, Andrea and Terwijn, Sebastiaan A., Intermediate logics and factors of the Medvedev lattice, Annals of Pure and Applied Logic, vol. 155 (2008), no. 2, pp. 6985.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed