[1]Ash, C. J. and Knight, J., Computable Structures and the Hyperarithmetical Hierarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, Elsevier, Amsterdam, 2000.

[2]Barwise, Jon, Admissible Sets and Structures: An Approach to Definability Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1975.

[3]Becker, Howard, , this Journal, vol. 78 (2013), no. 4, pp. 1328–1344.

[4]Becker, Howard and Kechris, Alexander S., The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996.

[5]Burgess, John P., *A reflection phenomenon in descriptive set theory*. Fundamenta Mathematicae, vol. 104 (1979), no. 2, pp. 127–139.

[6]Downey, Rod and Montalbán, Antonio, *The isomorphism problem for torsion-free abelian groups is analytic complete*. Journal of Algebra, vol. 320 (2008), pp. 2291–2300.

[7]Fokina, Ekaterina B. and Friedman, Sy-David, *Equivalence relations on classes of computable structures*, Mathematical Theory and Computational Practice, Lecture Notes in Computer Science, vol. 5635, Springer, Berlin, 2009, pp. 198–207.

[8]Fokina, E. B., Friedman, S., Harizanov, V., Knight, J. F., McCoy, C., and Montalbán, A., , this Journal, vol. 77 (2012), no. 1, pp. 122–132.

[9]Friedman, Harvey and Stanley, Lee, , this Journal, vol. 54 (1989), no. 3, pp. 894–914.

[10]Gao, Su, , this Journal, vol. 66 (2001), no. 2, pp. 902–922.

[11]Gao, Su, *Invariant descriptive set theory*, Pure and Applied Mathematics, vol. 293, CRC Press, Boca Raton, FL, 2009.

[12]Harrison, J., *Recursive pseudo-well-orderings*. Transactions of the American Mathematical Society, vol. 131 (1968), pp. 526–543.

[13]Hjorth, Greg, *The isomorphism relation on countable torsion free abelian groups*. Fundamenta Mathematicae, vol. 175 (2002), no. 3, pp. 241–257.

[14]Harnik, V. and Makkai, M., *A tree argument in infinitary model theory*. Proceedings of the American Mathematical Society, vol. 67 (1977), no. 2, pp. 309–314.

[15]Kanamori, Akihiro, The Higher Infinite, *second ed.*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.

[16]Knight, Julia and Montalbán, Antonio, $\sum _1^1 $-*equivalence relations which are on top*, unpublished notes, September 2010. [17]Montalbán, Antonio, *On the equimorphism types of linear orderings*. Bulletin of Symbolic Logic, vol. 13 (2007), no. 1, pp. 71–99.

[18]Montalbán, Antonio, *A computability theoretic equivalent to Vaught’s conjecture*. Advances in Mathematics, vol. 235 (2013), pp. 56–73.

[19]Montalbán, Antonio, .

[20]Montalbán, Antonio, .

[21]Nadel, Mark, *Scott sentences and admissible sets*. Annals of Mathematical Logic, vol. 7 (1974), pp. 267–294.

[22]Rosenstein, Joseph G., *Linear orderings*, Pure and Applied Mathematics, vol. 98, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1982.

[23]Rubin, Matatyahu, *Theories of linear order*. Israel Journal of Mathematics, vol. 17 (1974), pp. 392–443.

[24]Sacks, Gerald E., *Countable admissible ordinals and hyperdegrees*. Advances in Mathematics, vol. 20 (1976), no. 2, pp. 213–262.

[25]Sacks, Gerald E., *Bounds on weak scattering*. Notre Dame Journal of Formal Logic, vol. 48 (2007), no. 1, pp. 5–31.

[26]Silver, Jack H., *Counting the number of equivalence classes of Borel and coanalytic equivalence relations*. Annals of Mathematical Logic, vol. 18 (1980), no. 1, pp. 1–28.

[27]Slaman, Theodore A. and Steel, John R., *Definable functions on degrees*, Cabal Seminar 81–85, Lecture Notes in Mathematics, vol. 1333, Springer, Berlin, 1988, pp. 37–55.

[28]Steel, John R., *On Vaught’s conjecture*, Cabal Seminar 76–77 (Proc. Caltech-UCLA Logic Sem., 1976–77), Lecture Notes in Mathematics, vol. 689, Springer, Berlin, 1978, pp. 193–208.