Skip to main content Accessibility help

The Borel Hierarchy Theorem from Brouwer's intuitionistic perspective

  • Wim Veldman (a1)


In intuitionistic analysis, Brouwer's Continuity Principle implies, together with an Axiom of Countable Choice, that the positively Borel sets form a genuinely growing hierarchy: every level of the hierarchy contains sets that do not occur at any lower level.



Hide All
[1]Bishop, E. and Bridges, D., Constructive analysis, Springer-Verlag, Berlin, 1985.
[2]Bockstaele, P., Het intuïtionisme bij de Franse wiskundigen, Verhandelingen van de Vlaamse Academie voor Wetenschappen, Letteren en Schone Kunsten, Jaargang XI, No. 32, Brussel, 1949.
[3]Borel, É., Leçons sur les fonctions de variables réelles et les développements en séries de polynomes, Gauthier-Villars, Paris, 1905, esp. Note III, page 156: Sur l'existence des fonctions de classe quelconque.
[4]Borel, É., La théorie de la mesure et la théorie de l'intégration, 1914, Note VI in [5], pp. 217256.
[5]Borel, É., Leçons sur la théorie des fonctions, deuxième ed., Gauthier-Villars, Paris, 1914.
[6]Borel, É., Les polémiques sur le transfini, 1914, Note IV in [5], pp. 135177.
[7]Bridges, D. and Richman, F., Varieties of constructive mathematics, Cambridge University Press, 1987.
[8]Brouwer, L.E.J., Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil: Allgemeine Mengenlehre, Koninklijke Nederlandsche Akademie van Wetenschappen, Verhandelingen, le sectie 12 no.5, 43 pp., 1918, also [13], pp. 150–190, with footnotes, pp. 573#x2013;585.
[9]Brouwer, L.E.J., Über Definitionsbereiche von Funktionen, Mathematische Annalen, vol. 97 (1927), pp. 6075, also in [13], pp. 390–405, see also [22], pp. 446–463.
[10]Brouwer, L.E.J., Essentieel-negatieve eigenschappen (Essentially negative properties), Koninklijke Nederlandse Akademie van Wetenschappen Proc., vol. 51 (1948), pp. 963964, also in: Indagationes Mathematicae vol. 10 (1948), pp. 322–323, also in [13], pp. 478–479.
[11]Brouwer, L.E.J., De non-aequivalentie van de constructieve en de negatieve orderelatie in het continuum, The non-equivalence of the constructive and the negative order relation on the continuum, Koninklijke Nederlandse Akademie van Wetenschappen Proc., vol. 52 (1949), pp. 122124, also in: Indagationes Mathematicae, vol. 11 (1949), pp. 37–39, also in [13], pp. 495–496.
[12]Brouwer, L.E.J., Points and spaces, Canadian Journal of Mathematics, vol. 6 (1954), pp. 117, also in: [13], pp. 522–538.
[13]Brouwer, L.E.J., Collected works, Vol. I: Philosophy and foundations of mathematics (Heyting, A., editor), North-Holland, Amsterdam, 1975.
[14]Brouwer, L.E.J., Intuitionismus, Wissenschaftsverlag, Mannheim etc., 1992, herausgegeben, eingeleitet und kommentiert von D. van Dalen.
[15]van Dantzig, D., On the principles of intuitionistic and affirmative mathematics, Koninklijke Ned-erlandse Akademie van Wetenschappen Proc., vol. 50 (1947), pp. 918–929 and 10921103, = Indagationes Mathematical vol. 9 (1947), pp. 429–440 and 506–517.
[16]Dragalin, A.G., Mathematical intuitionism, introduction to proof theory, Translations of Mathematical Monographs, vol. 67, American Mathematical Society, Providence, Rhode Island, 1987.
[17]Franchella, M., Brouwer and Griss on intuitionistic negation. Modern Logic, vol. 4 (1994), pp. 256265.
[18]Gentzen, G., Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, vol. 112 (1936), pp. 493565, see also [19], pp. 132–213.
[19]Gentzen, G., The collected papers of Gerhard Gentzen (Szabo, M.E., editor), North Holland Publishing Company, Amsterdam and London, 1969.
[20]Griss, G.F.C., Negationless intuitionistic mathematics, Koninklijke Nederlandse Akademie van Wetenschappen Proc., vol. 49 (1946), pp. 11271133, vol. 53 (1950), pp. 456–463, vol. 54 (1951), pp. 193–199 and 452–471 = Indagationes Mathematicae, vol. 8 (1946), pp. 675–681, vol. 12 (1950), pp. 108–115, vol. 13 (1951), pp. 193–199 and 452–471.
[21]Hausdorff, F., Über halbstetige Funktionen und deren Verallgemeinerung, Mathematische Zeitschrift, vol. 5 (1921), pp. 292309.
[22]van Heijenoort, J., From Frege to Gödel, a source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967.
[23]Heyting, A., Intuitionism, an introduction, North-Holland Publishing Company, Amsterdam etc., 1956, second, revised edition 1966, third, revised edition 1972.
[24]Howard, W.A. and Kreisel, G., Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis, this Journal, vol. 31 (1966), pp. 325358.
[25]Kechris, A.S., Classical descriptive set theory, Springer-Verlag, Berlin, 1996.
[26]Kleene, S.C., Recursive predicates and quantifiers, Transactions of the American Mathematical Society, vol. 53 (1943), pp. 4173.
[27]Kleene, S.C. and Vesley, R.E., The foundations of intuitionistic mathematics, especially in relation to recursive functions, North-Holland Publishing Company, Amsterdam, 1965.
[28]Kuroda, S., Intuitionistische Untersuchungen der formalistischen Logik, Nagoya Mathematical Journal, vol. 2 (1951), pp. 3547.
[29]Lebesgue, H., Sur les fonctions représentables analytiquement, Journal de Math. 6e série, vol. 1 (1905), pp. 139216.
[30]Lusin, N., Sur la classification de M. Baire, Comptes Rendus de l'Académie des Sciences, vol. 164 (1917), pp. 9194.
[31]Lusin, N., Sur les ensembles non measurables B et l'emploi de la diagonale de Cantor, Comptes Rendus de l'Académie des Sciences, vol. 181 (1925), pp. 9596.
[32]Lusin, N., Leçons sur les ensembles analytiques et leurs applications, Paris, 1930, second edition: Chelsea Publishing Company, New York 1972.
[33]Martin-Löf, P., Notes on constructive mathematics, Almquist and Wiksell, Stockholm, 1968.
[34]Martino, E. and Giaretta, P., Brouwer, Dummett and the bar theorem, Attidelcongressonazionale di logica, Montecatini Terme, 1–5 ottobre 1979 (a cura di Sergio Bernini), Bibliopolis, Napoli, 1981, pp. 541558.
[35]Moschovakis, J.R., Hierarchies in intuitionistic arithmetic, Gjuletchica, Bulgaria, 12 2002.
[36]Moschovakis, J.R., Classical and constructive hierarchies in extended intuitionistic analysis, this Journal, vol. 68 (2003), pp. 10151043.
[37]Moschovakis, J.R., The effect of Markov's Principle on the intuitionistic continuum, Oberwolfach reports, vol. 2(1), European Mathematical Society, 2005, Proceedings of Oberwolfach Proof Theory week.
[38]Moschovakis, Y.N., Descriptive set theory, North-Holland, Amsterdam, 1980.
[39]Mostowski, A., On definable sets of positive integers, Fundamenta Mathematicae, vol. 34 (1946), pp. 81112.
[40]Souslin, M., Sur une définition des ensembles mesurables B sans nombres transfinis, Comptes Rendus de l'Académie des Sciences, vol. 164 (1917), pp. 8891.
[41]Troelstra, A.S. (editor), Metamathematical investigation of intuitionistic arithmetic and analysis, Lecture Notes in Mathematics, vol. 344, Springer-Verlag, Berlin etc., 1973.
[42]Troelstra, A.S. and van Dalen, D., Constructivism in mathematics, volume I, North-Holland, Amsterdam, 1988.
[43]Veldman, W., Investigations in intuitionistic hierarchy theory, Ph.D. thesis, Katholieke Universiteit Nijmegen, 1981.
[44]Veldman, W., A survey of intuitionistic descriptive set theory, Mathematical logic (Petkov, P.P., editor), Proceedings of the Heyting Conference 1988, Plenum Press, New York and London, 1990, pp. 155174.
[45]Veldman, W., Some intuitionistic variations on the notion of a finite set of natural numbers, Perspectives on negation (de Swart, H.C.M. and Bergmans, L.J.M., editors), Essays in honour of Johan J. de Iongh on the occasion of his 80th birthday, Tilburg University Press, Tilburg, 1995, pp. 177202.
[46]Veldman, W., On sets enclosed between a set and its double complement, Logic and foundations of mathematics (Cantini, al., editors), Proceedings Xth International Congress on Logic, Methodology and Philosophy of Science, Florence 1995, Volume III, Kluwer Academic Publishers, Dordrecht, 1999, pp. 143154.
[47]Veldman, W., Understanding and using Brouwer's continuity principle, Reuniting the antipodes, constructive and nonstandard views of the continuum (Berger, U., Osswald, H., and Schuster, P., editors), Proceedings of a Symposium held in San Servolo/Venice, 1999, Kluwer Academic Publishers, Dordrecht, 2001, pp. 285302.
[48]Veldman, W., On the persistent difficulty of disjunction, Philosophical dimensions of logic and science (Rojszczak, A., Cachro, J., and Kurczewski, G., editors), Selected Contributed Papers from the 11th International Congress on Logic, Methodology and Philosophy of Science, Kraków, 1999, Kluwer Academic Publishers, Dordrecht, 2003, pp. 7790.
[49]Veldman, W., An intuitionistic proof of Kruskal's theorem, Archive for Mathematical Logic, vol. 43 (2004) , pp. 215264.
[50]Veldman, W., Brouwer's Fan Theorem as an axiom and as a contrast to Kleene's Alternative, Technical Report 0509, Department of Mathematics, Radboud University Nijmegen, 07 2005.
[51]Veldman, W., Perhaps the Intermediate Value Theorem, Constructivity, computability and logic. A collection of papers in honour of the 60th birthday of Douglas Bridges. Journal of Universal Computer Science (Calude, C.S. and Ishihara, H., editors), vol. 11, 2005, pp. 21422158.
[52]Veldman, W., Two simple sets that are not positively Borel, Annals of Pure and Applied Logic, vol. 135 (2005), pp. 151209.
[53]Veldman, W., The Borel hierarchy and the projective hierarchy from Brouwer's intuitionistic perspective, Technical Report 0604, Department of Mathematics, Radboud University Nijmegen, the Netherlands, 06 2006.
[54]Veldman, W., Brouwer's real thesis on bars, Philosophia Scientiae, (2006), pp. 2142, Cahier spécial 6.
[55]Waaldijk, F., Modern intuitionistic topology, Ph.D. thesis, Katholieke Universiteit Nijmegen, 1996.

Related content

Powered by UNSILO

The Borel Hierarchy Theorem from Brouwer's intuitionistic perspective

  • Wim Veldman (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.