Skip to main content Accessibility help

Amoeba reals

  • Haim Judah (a1) and Miroslav Repickẏ (a2)


We define the ideal with the property that a real omits all Borel sets in the ideal which are coded in a transitive model if and only if it is an amoeba real over this model. We investigate some other properties of this ideal. Strolling through the "amoeba forest" we gain as an application a modification of the proof of the inequality between the additivities of Lebesgue measure and Baire category.



Hide All
[1]Bagaria, J. and Judah, H., Amoeba forcing, Suslin absoluteness and additivity of measure, Set theory of the continuum, (Judah, al., editors), MSRI Publications, vol. 26, Springer-Verlag, Berlin, 1992, pp. 155173.
[2]Bartoszyński, T., Additivity of measure implies additivity of category, Transactions of the American Mathematical Society, vol. 281 (1984), pp. 209213.
[3]Bartoszyński, T. and Judah, H., Jumping with random reals, Annals of Pure and Applied Logic, vol. 48 (1990), pp. 197213.
[4]Brendle, J. and Judah, H., Perfect set of random reals, Israel Journal of Mathematics, vol. 83 (1993), pp. 153176.
[5]Cichoń, J., Kamburelis, A., and Pawlikowski, J., On dense subsets of measure algebra, Proceedings of the American Mathematical Society, vol. 94 (1985), pp. 142146.
[6]Fremlin, D. H., Cichoń's diagram, Séminaire d'initiation à l'analyse: G. Choquet—M. Rogalski— J. Saint-Raymond 23ème année: 1983/84 (Publications Mathématiques de l'Université Pierre et Marie Curie, no. 66), Université Paris-VI, Paris, 1984, Exposé 5.
[7]Judah, H. and Shelah, S., The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), this Journal, vol. 55 (1990), pp. 909927.
[8]Miller, A. W., Additivity of measure implies dominating reals, Proceedings of the American Mathematical Society, vol. 91 (1984), pp. 111117.
[9]Morgan, J. C. II, Point set theory, Marcel Dekker, New York, 1990.
[10]Raisonnier, J. and Stern, J., The strength of measurability hypothesis, Israel Journal of Mathematics, vol. 50, 4 (1985), pp. 337349.
[11]Truss, J. K., Sets having calibre ℵ1, Logic Colloquium '76 (Gandy, R. and Hyland, M., editors), North-Holland, Amsterdam, 1977, pp. 595612.
[12]Truss, J. K., Connections between different amoeba algebras, Fundamenta Mathematicae, vol. 130 (1988), pp. 137155.


Amoeba reals

  • Haim Judah (a1) and Miroslav Repickẏ (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed