Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-rtbc9 Total loading time: 1.322 Render date: 2021-04-21T02:19:32.624Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Truth definitions in finite models

Published online by Cambridge University Press:  12 March 2014

Leszek Aleksander Kołodziejczyk
Affiliation:
Institute of Philosophy, Warsaw University, Krakowskie Przedmieście 3, 00-047 Warsaw, Poland, E-mail: l.kolodziejczyk@zodiac.mimuw.edu.pl
Corresponding

Abstract

The paper discusses the notion of finite model truth definitions (or FM-truth definitions), introduced by M. Mostowski as a finite model analogue of Tarski's classical notion of truth definition.

We compare FM-truth definitions with Vardi's concept of the combined complexity of logics, noting an important difference: the difficulty of defining FM-truth for a logic does not depend on the syntax of , as long as it is decidable. It follows that for a natural there exist FM-truth definitions whose evaluation is much easier than the combined complexly of would suggest.

We apply the general theory to give a complexity-theoretical characterization of the logics for which the classes (prenex classes of higher order logics) define FM-truth. For any d ≥ 2, m ≥ 1 we construct a family of syntactically defined fragments of which satisfy this characterization. We also use the classes to give a refinement of known results on the complexity classes captured by .

We close with a few simple corollaries, one of which gives a sufficient condition for the existence, given a vocabulary σ, of a fixed number k such that model checking for all first order sentences over σ can be done in deterministic time nk.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Balcázar, J. L., Díaz, J., and Gabarró, J., Structural complexity I, second, revised ed., Springer-Verlag, 1995.CrossRefGoogle Scholar
[2]Bennett, J., On spectra, Ph. D. Thesis, Princeton University, 1962.Google Scholar
[3]Börger, E., Decision problems in predicate logic, Logic colloquium '82 (Lolli, G.et al., editors), North-Holland, 1984, pp. 263301.CrossRefGoogle Scholar
[4]Christen, C. A., Spektren und Klassen Elementarer Funktionen, Ph. D. Thesis, ETH Zürich, 1974.Google Scholar
[5]Eiter, T., Gottlob, G., and Gurevich, Y., Normal forms for second-order logic over finite structures, and classification of NP optimization problems, Annals of Pure and Applied Logic, vol. 78 (1996), pp. 111125.CrossRefGoogle Scholar
[6]Fagin, R., Generalized first-order spectra and polynomial-time recognizable sets, Complexity of Computation, S1AM-AMS Proceedings, vol. 7 (1974), pp. 4373.Google Scholar
[7]Gottlob, G., Relativized Logspace and generalized quantifiers over finite ordered structures, this Journal, vol. 62 (1997), pp. 545574.Google Scholar
[8]Gottlob, G., Leone, N., and Veith, H., Succinctness as a source of complexity in logical formalisms, Annals of Pure and Applied Logic, vol. 97 (1999), pp. 231260.CrossRefGoogle Scholar
[9]Hella, L. and Torres, J. M. Turull, Expressing database queries with higher order logics, Technical Report 5/2003, Information Systems Department, Massey University, 2003.Google Scholar
[10]Immerman, N., Descriptive complexity, Springer-Verlag, 1999.CrossRefGoogle Scholar
[11]Leivant, D., Descriptive characterizations of computational complexity, Journal of Computer and System Sciences, vol. 39 (1987), pp. 5183.CrossRefGoogle Scholar
[12]Leivant, D., Higher order logic, Handbook of logic in artificial intelligence and logic programming (Gabbay, D. M.et al., editors), vol. 2, Oxford University Press, 1994, pp. 228321.Google Scholar
[13]Makowsky, J. A. and Pnueli, Y. B., Arity and alternation in second order logic, Annals of Pure and Applied Logic, vol. 78 (1996), pp. 189202.CrossRefGoogle Scholar
[14]Mostowski, M., On representing concepts infinite models, Mathematical Logic Quarterly, vol. 47 (2001). pp. 513523.3.0.CO;2-J>CrossRefGoogle Scholar
[15]Mostowski, M., On representing semantics infinite models, to appear in Proceedings of Contributed Papers, LMPhSc 99.Google Scholar
[16]Stockmeyer, L., The polynomial-time hierarchy, Theoretical Computer Science, vol. 3 (1977). pp. 122.CrossRefGoogle Scholar
[17]Tarski, A., Pojȩcie prawdy w językach nauk dedukcyjnych, Warszawskie Towarzystwo Naukowe, Warszawa, 1933, English translation of the German version: The concept of truth in formalized languages, in A. Tarski. Logic, semantics, metamathematics, Oxford University Press. 1956. pp. 152278.Google Scholar
[18]Vardi, M., The complexity of relational query languages, Proceedings of the 14th ACM Symposium on Theory of Computing, 1982, pp. 137146.Google Scholar
[19]Zdanowski, K., Arithmetics in finite hut potentially infinite worlds, Ph. D. Thesis, Warsaw University, in preparation.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Truth definitions in finite models
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Truth definitions in finite models
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Truth definitions in finite models
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *