Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-nbrzn Total loading time: 0.167 Render date: 2021-04-17T21:25:31.227Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Sous-groupes de Carter dans les groupes de rang de Morley fini

Published online by Cambridge University Press:  12 March 2014

Olivier Frécon
Affiliation:
Département de Mathématiques, Université de la Réunion, 15, Avenue René Cassin, 97715 Saint-Denis Messag Cedex 9, France, E-mail: olivier.frecon@univ-reunion.fr
Corresponding

Résumé

A Carter subgroup is a self-normalizing locally nilpotent subgroup. For studying these subgroups in groups of finite Morley rank, we introduce the new notion of a locally closed subgroup. We show that every solvable group of finite Morley rank has a unique conjugacy class of Carter subgroups.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2004

Access options

Get access to the full version of this content by using one of the access options below.

References

[1]Altinel, T., Cherlin, G., Corredor, L.-J., et Nesin, A., A Hall theorem for ω-stable groups, Journal of the London Mathematical Society (2), vol. 57 (1998), no. 2, pp. 385397.CrossRefGoogle Scholar
[2]Borovik, A. V. et Nesin, A., Groups of finite Morley Rank, Oxford Logic Guides, 26, The Clarendon Press, Oxford University Press, New York, 1994.Google Scholar
[3]Bryant, R. M., Groups with the minimal condition on centralizers, Journal of Algebra, vol. 60 (1979), no. 2. pp. 371383.CrossRefGoogle Scholar
[4]Bryant, R. M. et Hartley, B., Periodic locally soluble groups with the minimal condition on centralizers, Journal of Algebra, vol. 61 (1979), no. 2, pp. 328334.CrossRefGoogle Scholar
[5]Carter, R. W., Nilpotent self-normalizing subgroups of soluble groups, Mathematische Zeitschrift, vol. 75 (1960/1961), pp. 136139.CrossRefGoogle Scholar
[6]Fischer, B., Gaschütz, W., et Hartley, B., Injektoren endlicher auflösbarer Gruppen, Mathematische Zeitschrift. vol. 102 (1967), pp. 337339.CrossRefGoogle Scholar
[7]Frécon, O., Sous-groupes anormaux dans les groupes de rang de Morley fini résolubles, Journal of Algebra, vol. 229 (2000), no. 1, pp. 118152.CrossRefGoogle Scholar
[8]Frécon, O., Sous-groupes de Hall généralisés dans les groupes de rang de Morley fini résolubles, Journal of Algebra, vol. 233 (2000), no. 1, pp. 253286.CrossRefGoogle Scholar
[9]Gardiner, A. D., Hartley, B., et Tomkinson, M. J., Saturated formations and Sylow structure in locally finite groups, Journal of Algebra, vol. 17 (1971), pp. 177211.CrossRefGoogle Scholar
[10]Gaschütz, W., Zur Theorie der endlichen auflösbaren Gruppen, Mathematische Zeitschrift, vol. 80 (1963), pp. 300305.CrossRefGoogle Scholar
[11]Hartley, B., Sylow theory in locally finite groups, Compositio Mathematica, vol. 25 (1972), pp. 263280.Google Scholar
[12]Hartley, B. et Tomkinson, M. J., Carter subgroups and injectors in a class of locally finite groups, Rendiconti del Seminario Matematico delta Università di Padova. vol. 79 (1988), pp. 203212.Google Scholar
[13]Macintyre, A.. On ω1-categorical theories of abelian groups, Fundamenta Mathematicae, vol. 70 (1971), no. 3, pp. 253270.Google Scholar
[14]Poizat, B., Groupes stables. Une tentative de conciliation entre la géométric algébrique et la logique mathématique, Nur Al-mantiq Wal-Ma'rifah, Villeurbanne, 1987.Google Scholar
[15]Robinson, D. J. S., A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1993.Google Scholar
[16]Wagner, F. O., Nilpotent complements and Carter subgroups in stable ℜ-groups, Archive for Mathematical Logic, vol. 33 (1994), no. 1, pp. 2334.CrossRefGoogle Scholar
[17]Wehrfritz, B. A. F., Sylow theorems for periodic linear groups, Proceedings of the London Mathematical Society, vol. 18 (1968), no. 3, pp. 125140.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sous-groupes de Carter dans les groupes de rang de Morley fini
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Sous-groupes de Carter dans les groupes de rang de Morley fini
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Sous-groupes de Carter dans les groupes de rang de Morley fini
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *