Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T10:16:46.088Z Has data issue: false hasContentIssue false

Elementary properties of power series fields over finite fields

Published online by Cambridge University Press:  12 March 2014

Franz-Viktor Kuhlmann*
Affiliation:
University of Saskatchewan, Department of Mathematics and Statistics, 106 Wiggins Road, Saskatoon, Saskatchewan, S7N 5E6, Canada, E-mail: fvk@math.usask.ca, URL: http://math.usask.ca/~fvk/

Abstract

In spite of the analogies between ℚp and which became evident through the work of Ax and Kochen, an adaptation of the complete recursive axiom system given by them for ℚp, to the case of does not render a complete axiom system. We show the independence of elementary properties which express the action of additive polynomials as maps on . We formulate an elementary property expressing this action and show that it holds for all maximal valued fields. We also derive an example of a rather simple immediate valued function field over a henselian defectless ground field which is not a henselian rational function field. This example is of special interest in connection with the open problem of local uniformization in positive characteristic.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ax, J., On the undecidability of power series fields, Proceedings of the American Mathematical Society, vol. 16, 1965, p. 846.Google Scholar
[2]Ax, J. and Kochen, S., Diophantine problems over local fields I, II, American Journal of Mathematics, vol. 87 (1965), pp. 605–630, pp. 631648.CrossRefGoogle Scholar
[3]Baur, W., Die Theorie der Paare reell abgeschlossener Körper, Monographies de L'Enseignment Mathématique, vol. 30, Université de Genève, 1982.Google Scholar
[4]Baur, W., On the elementary theory of pairs of real closed fields, this Journal, vol. 47 (1982), no. 3, pp. 669679.Google Scholar
[5]Delon, F., Quelques propriétés des corps valués en théories des modèles, Ph.D. thesis, Paris VII, 1981.Google Scholar
[6]Ershov, Y. L., On the elementary theory of maximal valued fields I. II, III, Algebra i Logika, vol. 4 (1965), no. 3, pp. 3170, vol. 5 (1966), no. 1, pp. 5–40, vol. 6 (1967), no. 3, pp. 31–38.Google Scholar
[7]Gravett, K. A. H., Note on a result of Krull, Cambridge Philosophical Society Proceedings, vol. 52, 1956, p. 379.CrossRefGoogle Scholar
[8]Kaplansky, I., Maximal fields with valuations I, Duke Mathematical Journal, vol. 9 (1942), pp. 303321.CrossRefGoogle Scholar
[9]Krull, W., Allgemeine Bewertungstheorie, Journal für die Reine und Angewandte Mathematik, vol. 167 (1931), pp. 160196.Google Scholar
[10]Kuhlmann, F.-V., The model theory of tame valued fields, in prepation.Google Scholar
[11]Kuhlmann, F.-V., A theorem about maps on spherically complete ultrametric spaces, preprint.Google Scholar
[12]Kuhlmann, F.-V., Valuation theory of fields, abelian groups and modules, Algebra, Logic and Applications (Macintyre, A. and Göbel, R., editors), Gordon and Breach, to appear.Google Scholar
[13]Kuhlmann, F.-V., Henselian function fields and tame fields, preprint (extended version of PhD thesis), 1990.Google Scholar
[14]Kuhlmann, F.-V., On local uniformization in arbitrary characteristic, The Fields Institute Preprint Series, Toronto, 1997.Google Scholar
[15]Kuhlmann, F.-V., On local uniformization in arbitrary characteristic I, preprint, 1998.Google Scholar
[16]Kuhlmann, F.-V., Valuation theoretic and model theoretic aspects of local uniformization, Proceedings of the Tirol Conference on Resolution of Singularities (Birkhäuser) (Hauser, H.et al., editors), 1999.Google Scholar
[17]Kuhlmann, F.-V. and Prestel, A., On places of algebraic function fields, Journal für die Reine und Angewandte Mathematik, vol. 353 (1984), pp. 182195.Google Scholar
[18]Lang, S., Algebra, Addison Wesley, New York, 1965.Google Scholar
[19]Ore, O., On a special class of polynomials, Transactions of the American Mathematical Society, vol. 35 (1933), pp. 559584.CrossRefGoogle Scholar
[20]Ribenboim, P., Théorie des valuations, Les Presses de l'Université de Montréal, Montréal, 1968.Google Scholar
[21]Robinson, J., The decision problem for fields, Theory of Models (proceedings of the 1963 International Symposium of Berkeley) (Amsterdam, North-Holland), 1965, pp. 299311.Google Scholar
[22]van den Dries, L. and Kuhlmann, F.-V., Images of additive polynomials in Fp((t)), Canadian Mathematical Bulletin, to appear.Google Scholar
[23]Whaples, G., Additive polynomials, Duke Mathematical Journal, vol. 21 (1954), pp. 5565.CrossRefGoogle Scholar
[24]Whaples, G., Galois cohomology of additive polynomials and n-th power mappings of fields, Duke Mathematical Journal, vol. 24 (1957), pp. 143150.CrossRefGoogle Scholar