Skip to main content Accessibility help
×
Home

Evaluation of a Botanical Extract that Mimics the Respiratory Cues of Cigarette Smoke

  • Jed E. Rose (a1), Perry N. Willette (a1), Tanaia H. Loeback (a1) and David R. Botts (a1)

Abstract

Introduction: Cigarette addiction results from both pharmacological effects of nicotine and the rewarding effects of associated cues, including respiratory tract sensations.

Aims: This study sought to evaluate the initial acceptability of a non-nicotine botanical formulation that provided similar respiratory tract cues.

Methods: Two active test products and matching placebos were evaluated. One test product, an e-cigarette-like device, delivered a visible aerosol upon puffing; the other test product delivered an invisible vapour at ambient temperature. Test products delivered a botanical extract with flavourings and vehicle; the placebos delivered flavourings and vehicle only. Sixteen participants had 3-h ad libitum access to each test product and associated placebos, and were deprived of combustible cigarettes for 1 h before and throughout the 3-h evaluation period. Subjects rated the satisfaction (primary outcome) and other sensory qualities of the products. Safety evaluations included pulmonary function testing and monitoring vital signs.

Results: Satisfaction ratings (seven-point scale) were significantly greater for the active e-cigarette-like condition; M = 3.18, SD = 1.04 versus M = 2.69, SD = 1.22. Safety evaluations showed no clinically significant changes.

Conclusions: The results support the potential acceptability of a non-nicotine cigarette substitute in providing satisfaction to smokers. This approach merits further evaluation for safety and acceptability in tobacco harm reduction and cessation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evaluation of a Botanical Extract that Mimics the Respiratory Cues of Cigarette Smoke
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evaluation of a Botanical Extract that Mimics the Respiratory Cues of Cigarette Smoke
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evaluation of a Botanical Extract that Mimics the Respiratory Cues of Cigarette Smoke
      Available formats
      ×

Copyright

Corresponding author

Address for correspondence: Perry N. Willette, MD, FAAFP, Rose Research Center, 7920 ACC Blvd, Suite 110, Raleigh, North Carolina27617. Email: Perry.Willette@RoseResearchCenter.com

References

Hide All
Behm, F. M., & Rose, J. E. (1994). Reducing craving for cigarettes while decreasing smoke intake using capsaicin-enhanced low tar cigarettes. Experimental and Clinical Psychopharmacology, 2 (2), 143153.
Behm, F. M., Schur, C., Levin, E. D., Tashkin, D. P., & Rose, J. E. (1993). Clinical evaluation of a citric acid inhaler for smoking cessation. Drug and Alcohol Dependence, 31 (2), 131138.
Carter, B. D., Freedman, N. D., & Jacobs, E. J. (2015). Smoking and mortality-beyond established causes. The New England Journal of Medicine, 372 (22), 2170.
Etter, J.-F. (2016). Throat hit in users of the electronic cigarette: An exploratory study. Psychology of Addictive Behaviors, 30 (1), 93100.
FDA (2017). Rules, regulations & guidance. Retrieved June 23, 2017 from https://www.fda.gov/TobaccoProducts/Labeling/RulesRegulationsGuidance/default.htm
Jamal, A. (2016). Current cigarette smoking among adults–United States, 2005–2015. Morbidity and Mortality Weekly Report, 65, 12051211.
Levin, E. D., Behm, F., Carnahan, E., LeClair, R., Shipley, R., & Rose, J. E. (1993). Clinical trials using ascorbic acid aerosol to aid smoking cessation. Drug and Alcohol Dependence, 33 (3), 211223.
Naqvi, N. H., & Bechara, A. (2005). The airway sensory impact of nicotine contributes to the conditioned reinforcing effects of individual puffs from cigarettes. Pharmacology, Biochemistry, and Behavior, 81 (4), 821829. doi: 10.1016/j.pbb.2005.06.005.
Rose, J., & Behm, F. (2004). Effects of low nicotine content cigarettes on smoke intake. Nicotine & Tobacco Research, 6 (2), 309319.
Rose, J. E., & Behm, F. M. (1994). Inhalation of vapor from black pepper extract reduces smoking withdrawal symptoms. Drug and Alcohol Dependence, 34 (3), 225229.
Rose, J. E., Westman, E. C., Behm, F. M., Johnson, M. P., & Goldberg, J. S. (1999). Blockade of smoking satisfaction using the peripheral nicotinic antagonist trimethaphan. Pharmacology, Biochemistry, and Behavior, 62 (1), 165172.
Rose, J. E., Zinser, M. C., Tashkin, D. P., Newcomb, R., & Ertle, A. (1984). Subjective response to cigarette smoking following airway anesthetization. Addictive Behaviors, 9 (2), 211215.
Sentiens, LLC (2012a). SENTIENS SCIENCE – Chemosensation. Retrieved February 7, 2017 from http://www.sentiens.us/chemosensation
Sentiens, LLC (2012b). SENTIENS SCIENCE – Guiding Principles and Safety. Retrieved February 2, 2018 from https://www.sentiens.us/safety-gateway-theories
Sentiens, LLC (2012c). SENTIENS SCIENCE – Novus for Healthcare Professionals. Retrieved February 2, 2018 from https://www.sentiens.us/for-healthcare-professionals
Steinberg, M. B., Zimmermann, M. H., Delnevo, C. D., Lewis, M. J., Shukla, P., Coups, E. J. et al. (2014). E-cigarette versus nicotine inhaler: Comparing the perceptions and experiences of inhaled nicotine devices. Journal of General Internal Medicine, 29 (11), 14441450. doi: 10.1007/s11606-014-2889-7
Tobacco Use and Dependence Guideline Panel (2008a). Evidence and Recommendations. US Department of Health and Human Services, Washington, DC. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK63943/
Tobacco Use and Dependence Guideline Panel (2008b, May). Table 6.26, Meta-analysis (2008): Effectiveness and abstinence rates for various medications and medication combinations compared to placebo at 6-months postquit (n = 83 studies). US Department of Health and Human Services, Washington, DC. Retrieved June 21, 2017 from https://www.ncbi.nlm.nih.gov/books/NBK63958/table/A29582/
von Borstel, R., Tan, D., Siverling, J., & Timokhina, I. S. (2014). U.S. Patent US8646461 B2, Device and method for simulating chemosensation of smoking, February 11, 2014. Retrieved from http://www.google.com/patents/US8646461
Westman, E. C., Behm, F. M., & Rose, J. E. (1995). Airway sensory replacement combined with nicotine replacement for smoking cessation. A randomized, placebo-controlled trial using a citric acid inhaler. Chest, 107 (5), 13581364.
WHO (2015). Noncommunicable diseases. Retrieved February 7, 2017 from http://www.who.int/mediacentre/factsheets/fs355/en/
Xu, X., Bishop, E. E., Kennedy, S. M., Simpson, S. A., & Pechacek, T. F. (2015). Annual healthcare spending attributable to cigarette smoking: An update. American Journal of Preventive Medicine, 48 (3), 326333. doi: 10.1016/j.amepre.2014.10.012.

Evaluation of a Botanical Extract that Mimics the Respiratory Cues of Cigarette Smoke

  • Jed E. Rose (a1), Perry N. Willette (a1), Tanaia H. Loeback (a1) and David R. Botts (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed