Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T23:18:34.406Z Has data issue: false hasContentIssue false

UroLift implants as surrogate fiducial markers for cone-beam CT-based prostate image-guided radiotherapy

Published online by Cambridge University Press:  03 March 2023

Ahmed Al-Balushi
Affiliation:
School of Health Sciences, University of Liverpool, Liverpool L69 3BX, UK
Michelle Cain
Affiliation:
School of Health Sciences, University of Liverpool, Liverpool L69 3BX, UK Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool L78YA, UK
Phil Reynolds*
Affiliation:
School of Health Sciences, University of Liverpool, Liverpool L69 3BX, UK Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool L78YA, UK
Pete Bridge
Affiliation:
School of Health Sciences, University of Liverpool, Liverpool L69 3BX, UK
*
Author for correspondence: Phil Reynolds, Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool L78YA, UK. E-mail: philreynolds@nhs.net

Abstract

Introduction:

UroLift implants are a novel treatment for the obstructive lower urinary tract symptoms arising from benign prostatic hyperplasia. This case study aimed to assess their effectiveness as fiducial marker (FM) surrogates in prostate image-guided radiotherapy (IGRT).

Method:

Cone-beam CT images from a patient receiving prostate radiation therapy underwent manual alignment using UroLift implants and also prostate soft-tissue matching by five experienced therapeutic radiographers. The match values of both methods were compared using Bland–Altman analysis. All five observers were also asked to score the ease of matching using both approaches.

Results:

The 95% mean level of agreement for the UroLift matches were within a 2-mm threshold in all dimensions. Comparison of UroLift and prostate matches had 95% limit of agreement values of −0·98 to 1·78, −0·58 to 0·49 and −1·83 to 1·04 mm in the vertical, longitudinal and lateral planes, respectively. All of the UroLift matches were rated as ‘very easy’ or ‘possible with little difficulty’ by the five observers.

Conclusion:

A small difference between the CBCT UroLift and CBCT prostate match was found. It has been shown that IGRT to the prostate with the aid of the UroLift system implants and CBCT is feasible and can eliminate the need for FM implants. Wider evaluation in a large cohort is recommended.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dang, A, Cao, M, Kishan, AU, Agazaryan, N, Kupelian, PA. Image-guided radiotherapy for prostate cancer. Transl Andrology Urol 2018; 7: 308320.CrossRefGoogle ScholarPubMed
Goyal, S, Kataria, T. Image guidance in radiation therapy: techniques and applications. Radiol Res Pract 2014; 110.Google ScholarPubMed
Barney, BM, Lee, RJ, Handrahan, D, Welsh, KT, Cook, JT, Sause, WT. Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with cone beam computed tomography (CBCT). Int J Radiat Oncol Biol Phys 2011; 80 (1): 301305.CrossRefGoogle ScholarPubMed
McNair, H, Buijs, M. Image guided radiotherapy moving towards real time adaptive radiotherapy; global positioning system for radiotherapy? Tech Innov Patient Support Radiat Oncol 2019; 12: 12.CrossRefGoogle ScholarPubMed
Osman, SOS, Russell, E, King, RB et al. Fiducial markers visibility and artefacts in prostate cancer radiotherapy multi-modality imaging. Radiat Oncol 2019; 14 (1): 113.CrossRefGoogle ScholarPubMed
Beltran, C, Herman, MG, Davis, BJ. Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 2008; 70 (1): 289295.CrossRefGoogle ScholarPubMed
Björeland, U, Jonsson, J, Alm, M, Beckman, L, Nyholm, T, Thellenberg-Karlsson, C. Inter-fraction movements of the prostate and pelvic lymph nodes during IGRT. J Radiat Oncol 2018; 7 (4): 357366.CrossRefGoogle ScholarPubMed
Shi, W, Li, JG, Zlotecki, RA et al. Evaluation of kV Cone-Beam CT performance for prostate IGRT: A comparison of automatic grey-value alignment to implanted fiducial-marker alignment. Am J Clin Oncol 2011; 34 (1): 1621.CrossRefGoogle ScholarPubMed
Deegan, T, Owen, R, Holt, T et al. Assessment of cone beam CT registration for prostate radiation therapy: Fiducial marker and soft tissue methods. J Med Imag Radiat Oncol 2015; 59 (1): 9198.CrossRefGoogle ScholarPubMed
Saad, A, Goldstein, J, Lawrence, YR et al. Transperineal implantation of gold fiducial markers (gold seeds) for prostate image-guided radiation therapy: a feasible technique associated with a low risk of complications. J Med Radiat Sci 2015; 62 (4): 261266.CrossRefGoogle ScholarPubMed
Denisenko, A, Somani, B, Agrawal, V. Recent advances in UroLift: a comprehensive overview. Turk J Urol 2022; 48 (1): 1116.CrossRefGoogle ScholarPubMed
Al-Singary, W, Patel, R, Obi-Njoku, O, Patel, HRH. The UroLift® System for lower urinary tract obstruction: patient selection for optimum clinical outcome. Minim Invasiv Ther 2022; 31 (3): 456461.CrossRefGoogle ScholarPubMed
Roehrborn, CG, Chin, PT, Woo, HH. The UroLift implant: mechanism behind rapid and durable relief from prostatic obstruction. Prostate Cancer P D 2022; 25 (1): 7985.CrossRefGoogle ScholarPubMed
Tastemur, S, Yilmaz, M, Kasap, Y, Olcucuoglu, E, Ardicoglu, A. The effect of transurethral prostate resection due to benign prostate hyperplasia on sexual functions. Med Sci 2021; 10 (3): 698701.CrossRefGoogle Scholar
Keehn, A, Fram, E, Garg, M, Maria, P. UroLift in place of fiducial markers for patients with benign prostatic hyperplasia undergoing external beam radiation therapy. Urology 2017; 104: 230234.CrossRefGoogle ScholarPubMed
Biswal, NC, McKenna, MG, Singh, R, Swann, B. UroLift as a surrogate for fiducial markers in IGRT planning of prostate cancer in BPH patients. Pract Radiat Oncol 8 (4): e231e233.CrossRefGoogle Scholar
Ray, A, Morgan, H, Wilkes, A, Carter, K, Carolan-Rees, G. The Urolift System for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia: a NICE medical technology guidance. Appl Health Econ Policy 2016; 14 (5): 515526.CrossRefGoogle ScholarPubMed
Deegan, T, Owen, R, Holt, T et al. Interobserver variability of radiation therapists aligning to fiducial markers for prostate radiation therapy. J Med Imag Radiat Oncol 2013; 57 (4): 519523.CrossRefGoogle ScholarPubMed
Létourneau, D, Martinez, AA, Lockman, D et al. Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. Int J Radiat Oncol Biol Phys 2005; 62 (4): 12391246.CrossRefGoogle ScholarPubMed
Langen, KM, Willoughby, TR, Meeks, SL et al. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 2008; 71 (4): 10841090.CrossRefGoogle ScholarPubMed
Ingrosso, G, Miceli, R, Ponti, E et al. Interfraction prostate displacement during image-guided radiotherapy using intraprostatic fiducial markers and a cone-beam computed tomography system: A volumetric off-line analysis in relation to the variations of rectal and bladder volumes. J Canc Res Ther 2019; 15 (8): 6972.CrossRefGoogle Scholar
Delouya, G, Carrier, J-F, Béliveau-Nadeau, D, Donath, D, Taussky, D. Migration of intraprostatic fiducial markers and its influence on the matching quality in external beam radiation therapy for prostate cancer. Radiother Oncol 2010; 96 (1): 4347.CrossRefGoogle ScholarPubMed
Chung, PWM, Haycocks, T, Brown, T et al. On-line aSi portal imaging of implanted fiducial markers for the reduction of interfraction error during conformal radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 2004; 60 (1): 329334.CrossRefGoogle ScholarPubMed
Wood, TJ, Moore, CS, Horsfield, CJ, Saunderson, JR, Beavis, AW. Accounting for patient size in the optimization of dose and image quality of pelvis cone beam CT protocols on the Varian OBI system. Brit J Radiol 88 (1055): 20150364.CrossRefGoogle Scholar