Skip to main content Accessibility help

Selection of patient for gated treatment based on the information from 4DCT imaging in stereotactic body radiotherapy of non-small cell lung cancer

  • N. V. N. Madhusudhana Sresty (a1), A. Krishnam Raju (a1), S. D. Sharma (a2), T. Anil Kumar (a1), Shabbir Ahamed (a1) and Harjot Kaur Bajwa (a1)...



Stereotactic body radiotherapy (SBRT) is widely used for the treatment of stage-I non-small cell lung cancer (NSCLC). Patient-specific motion correlated with 4DCT could be essential for hypofractionated SBRT. All patients undergoing SBRT do not require motion management during the dose delivery. The objective of this study was to evaluate which patient may benefit from Gated SBRT.

Materials and methods

Treatment planning of 20 patients of stage-I NSCLC was analysed. Conventional and 4DCT scans were taken. Internal target volume as well as planning target volume (ITV and PTV) were determined in the CT data sets. PTVall phases created using 4DCT data sets and PTV15mm created using conventional CT data were compared. Also, ITVall phases were compared with ITV created from maximum intensity projections (ITVMIP). Suitability of patients for motion management-based treatment delivery was also evaluated.


The average ITVMIP to ITVall phases ratio is 1·06 indicating good agreement between them. Based on the ratio of intensity projections, 9 out of 17 patients were found suitable for our existing gated treatment.


4D CT is the main requirement in SBRT to identify the patients who can benefit from motion management during the dose delivery.


Corresponding author

Author for correspondence: Dr N. V. N. Madhusudhana Sresty, Head—Medical Physics, Department of Radiotherapy, Basavatarakam Indo American Cancer Hospital & Research Institute, Road No: 14, Banjara Hills, Hyderabad 500034, India. Tel:+91- 9985151221, Fax: 040-23542120. E-mail:


Hide All

Cite this article: Sresty NVNM, Raju AK, Sharma SD, Kumar TA, Ahamed S, Bajwa HK. (2019) Selection of patient for gated treatment based on the information from 4DCT imaging in stereotactic body radiotherapy of non-small cell lung cancer. Journal of Radiotherapy in Practice18: 175–179. doi: 10.1017/S1460396918000614



Hide All
1. Keall, P, Mageras, G, Balter, J.M., et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006; 33: 38743900.
2. Ishihara, Y, Nakamura, M, Miyabe, Y. et al. Development of a four-dimensional Monte Carlo dose calculation system for real-time tumor-tracking irradiation with a gimbaled X-ray head. Phys Med 2017; 35: 5965. doi: 10.1016/j.ejmp.2017.02.004.
3. Seppenwoolde, Y, Shirato, H, Kitamura, K et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002; 53: 822834.
4. Benedict, S, Yenice, K, Followill, D et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 2010; 37: 40784101.
5. Simone, C, Dorsey, J. Additional data in the debate on stage I non-small cell lung cancer: surgery versus stereotactic ablative radiotherapy. Ann Transl Med 2015; 3: 172.
6 Zheng, X, Schipper, M, Kidwell, K et al. Survival outcome after stereotactic body radiation therapy and surgery for stage I non-small cell lung cancer: a meta-analysis. Int J Radiat Oncol Biol Phys 2014; 90: 603611.
7. van der Geld, Y, Lagerwaard, G, van Sörnsen de Koste, J, Cuijpers, J, Slotman, B, enan, S. Reproducibility of target volumes generated using uncoached 4-dimensional CT scans for peripheral lung cancer. Radiat Oncol 2006; 1: 43.
8. Chen, G, Kung, J, Beaudette, K. Artifacts in computed tomography scanning of moving objects. Sem Radiat Oncol 2004; 14: 1926.
9. Bettinardi, V, Picchio, M, Muzio, N, Gianolli, L, Gilardi, M, Messa, C. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques. Radiother Oncol 2010; 96: 311316.
10. Shimizu, S, Shirato, H, Kagei, K et al. Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys 2000; 46: 11271133.
11. International Commission on Radiation Units and Measurements. ICRU Report 62: Prescribing, Recording, and Reporting Photon Beam Therapy (Supplement to ICRU Report 50). Bethesda, MD: ICRU, 1999.
12. Giraud, P, Morvan, E, Claude, L et al. Respiratory gating techniques for optimization of lung cancer radiotherapy. J Thorac Oncol 2011; 6: 20582068.
13. Goitein, M. Organ and tumor motion: an overview. Semin Radiat Oncol 2004; 14: 29.
14. Giraud, P, De Rycke, Y, Dubray, B et al. Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing. Int J Radiat Oncol Biol Phys 2001; 51: 10811092.
15. Van Sornsen de Koste, J, Lagerwaard, F, Nijssen Visser, MRJ et al. Tumor location cannot predict the mobility of lung tumors: a 3D analysis of data generated from multiple CT scans. Int J Radiat Oncol Biol Phys 2003; 56: 348354.
16. Lagerwaard, F, van Sornsen de Koste, J, Nijssen-Visser, MRJ et al. Multiple ‘slow’ CT scans for incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys 2001; 51: 932937.
17. van Sörnsen de Koste, J, Lagerwaard, F, de Boer, HCR et al. Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe? Int J Radiat Oncol Phys 2003; 55: 13941399.
18. Underberg, RWM, Lagerwaard, F, Cuijpers, J.P et al. 4-Dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys 2004; 60: 12831290.
19. Underberg, RWM, Lagerwaard, F, Slotman, B et al. Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer – an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys 2005; 62: 554560.
20. Schwarz, M, Cattaneo, G, Marrazzo, L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: a review. Phys Med 2017; 36: 126139. doi: 10.1016/j.ejmp.2017.02.011.
21. Caillet, V, Booth, J, Keall, P. IGRT and motion management during lung SBRT delivery. Phys Med 2017; 44: 113122. doi: 10.1016/j.ejmp.2017.06.006.
22. Uchida, Y, Tachibana, H, Kamei, Y, Kashihara, K. Effectiveness of a simple and real-time baseline shift monitoring system during stereotactic body radiation therapy of lung tumors. Phys Med 2017; 43: 100106. doi: 10.1016/j.ejmp.2017.11.001.
23. Underberg, RWM, Lagerwaard, F, Slotman, B, Cuijpers, J, Senan, S. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys 2005; 63: 253260.10.1016/j.ijrobp.2005.05.045
24. Saito, T, Matsuyama, T, Toya, R et al. Respiratory gating during stereotactic body radiotherapy for lung cancer reduces tumor position variability. PLoS One 2014; 9 (11): e112824. doi: 10.1371/journal.pone.0112824.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed