Skip to main content Accessibility help
×
Home

Preliminary absorbed dose evaluation of two novel 153Sm bone-seeking agents for radiotherapy of bone metastases: comparison with 153Sm-EDTMP

  • Hassan Yousefnia (a1), Samaneh Zolghadri (a1), A. Reza Jalilian (a1) and Zohreh Naseri (a2)

Abstract

Aim

The amount of energy deposited on any organ by ionising radiation termed absorbed dose, plays an important role in evaluating the risks associated with the administration of radiopharmaceuticals. In this research work, the absorbed dose received by human organs for 153Sm-TTHMP and 153Sm-PDTMP was evaluated based on biodistribution studies on the Syrian rats.

Materials and methods

153Sm-TTHMP and 153Sm-PDTMP were successfully prepared with radiochemical purity of higher than 99%. The biodistribution of the complexes was investigated within the Syrian rats up to 48 hours post injection. The human absorbed dose of the complexes was estimated by the radiation dose assessment resource method.

Results

The highest absorbed dose for 153Sm-TTHMP and 153Sm-PDTMP was observed in the trabecular bone with 1·085 and 1·826 mGy/MBq, respectively. The bone to other critical organ dose ratio for 153Sm-PDTMP is significantly greater than 153Sm-TTHMP. Also, the bone/red marrow dose ratio for these complexes is comparable with this ratio for 153Sm-EDTMP, as the most clinically used Sm-153 bone pain palliative radiopharmaceutical.

Findings

According to the considerable bone absorbed dose against the insignificant absorbed dose of non-target organs, these complexes can be used as potential bone pain palliative agents in clinical applications.

Copyright

Corresponding author

Correspondence to: Samaneh Zolghadri, Nuclear Science and Technology Research Institute (NSTRI), Tehran, 14155-1339, Iran. Tel: +982188221103. Fax: +982188221105. E-mail: szolghadri@aeoi.org.ir

References

Hide All
1.Serafini, A N. Therapy of metastatic bone pain. J Nucl Med 2001; 42: 895906.
2.Pandit-Taskar, N, Batraki, M, Divgi, C R. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med 2004; 45: 13581365.
3.IAEA-TECDOC-1549. Criteria for Palliation of Bone Metastases – Clinical Applications. Vienna: IAEA, 2007.
4.Lipton, A. Pathophysiology of bone metastases: how this knowledge may lead to therapeutic intervention. J Support Oncol 2004; 2: 205220.
5.Eary, J F, Collins, C, Stabin, Met al. Samarium-153-EDTMP biodistribution and dosimetry estimation. J Nucl Med 1993; 34: 10311036.
6.Bouchet, L G, Bolch, W E, Goddu, S Met al. Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions. J Nucl Med 2000; 41: 682687.
7.Ouadi, A, Loussouarn, A, Morandeau, Let al. Influence of trans-l,2-diaminocyclohexane structure and mixed carboxylic/phosphonic group combinationson samarium-153 chelation capacity and stability. Eur J Med Chem 2004; 39: 467472.
8.Pandit-Taskar, N, Batraki, M, Divgi, C R. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med 2004; 45: 13581365.
9.Majali, M A, Mathakar, A R, Shimpi, H Het al. Studies on the preparation and stability of samarium-153 propylene diamine tetramethylene phosphonate (PDTMP) complex as a bone seeker. Appl Radiat Isotopes 2000; 53: 987991.
10.Naseri, Z, Jalilian, A R, Nemati Kharat, Aet al. Production, quality control and biological evaluation of 153Sm-TTHMP as a possible bone palliation agent. Iran J Nucl Med 2011; 19: 6068.
11.Stabin, M G, Tagesson, M, Thomas, S Ret al. Radiation dosimetry in nuclear medicine. Appl Radiat Isot 1996; 50: 7387.
12.Stabin, M G, Siegel, J A. Physical models and dose factors for use in internal dose assessment. Health Phys 2003; 85: 294310.
13.IAEA-TECDOC-1401. Quantifying Uncertainty in Nuclear Analytical Measurements. Vienna: IAEA, 2004.
14.Sparks, R B, Aydogan, B. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose. Sixth International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, TN: Oak Ridge Associated Universities. 1996: 705–716.
15.Yousefnia, H, Zolghadri, S, Jalilian, A Ret al. Preliminary dosimetric evaluation of (166)Ho-TTHMP for human based on biodistribution data in rats. Appl Radiat Isot 2014; 94: 260265.
16.Bevelacqua, J J. Internal dosimetry primer. Radiat Prot Manage 2005; 22: 717.
17.Turner, J H, Martindale, A A, Sorby, Pet al. Samarium-153 EDTMP therapy of disseminated skeletal metastasis. Eur J Nucl Med 1989; 15: 784795.

Keywords

Related content

Powered by UNSILO

Preliminary absorbed dose evaluation of two novel 153Sm bone-seeking agents for radiotherapy of bone metastases: comparison with 153Sm-EDTMP

  • Hassan Yousefnia (a1), Samaneh Zolghadri (a1), A. Reza Jalilian (a1) and Zohreh Naseri (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.