Skip to main content Accessibility help
×
Home

Hybrid intensity-modulated radiation therapy (IMRT) simultaneous integrated boost (SIB) technique versus three-dimensional (3D) conformal radiotherapy with SIB for breast radiotherapy: a planning comparison

  • Shayne K. Smith (a1), Reuben P. Estoesta (a1), Jaraad A. Kader (a1), Darren Martin (a1), Elizabeth R. Claridge-Mackonis (a1), Joanne M. Toohey (a1) and Susan L. Carroll (a1)...

Abstract

Aim

This study aims to compare conventional simultaneous integrated boost (SIB) planning technique with a hybrid SIB intensity-modulated radiation therapy (IMRT) technique with varying open tangent to IMRT field dose ratios. Furthermore, we investigated which of the dose ratios proves the most favourable as a class solution across a sample.

Methods

In total, 15 patients with conventional SIB treatment plans were re-planned with hybrid SIB IMRT technique using three differing open field:IMRT dose ratios, that is, 80:20, 70:30 and 60:40. Plans were compared using dosimetric comparison of organs at risk (OARs) and homogeneity and conformity indexes across target structures.

Results

All hybrid plans reduced dose maximums and showed a reduction of high doses to both lungs but increased lower doses, that is, V5, with similar results discovered for the heart. Contralateral breast dose was shown to decrease V5 and V1 measures by hybrid arms, whereas increasing the V2. Left anterior descending artery dose and non-irradiated structures were reduced by all hybrid arms. The homogeneity and conformity increased across all hybrid arms. Qualitative assessment of all plans also favoured hybrid plans.

Findings

Hybrid plans produced superior dose conformity, homogeneity, reduced dose maximums and showed an improvement in most OAR parameters. The 70:30 hybrid technique exhibited greater benefits as a class solution to the sample than conventional plans due to superior dose conformity and homogeneity to target volumes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hybrid intensity-modulated radiation therapy (IMRT) simultaneous integrated boost (SIB) technique versus three-dimensional (3D) conformal radiotherapy with SIB for breast radiotherapy: a planning comparison
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hybrid intensity-modulated radiation therapy (IMRT) simultaneous integrated boost (SIB) technique versus three-dimensional (3D) conformal radiotherapy with SIB for breast radiotherapy: a planning comparison
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hybrid intensity-modulated radiation therapy (IMRT) simultaneous integrated boost (SIB) technique versus three-dimensional (3D) conformal radiotherapy with SIB for breast radiotherapy: a planning comparison
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Shayne K. Smith, Department of Radiation Oncology, Chris O’Brien Lifehouse, Missenden Rd, Camperdown, NSW 2050, Australia. Tel: +61 0285 140 023. Fax: 61 9383 1027. E-mail: shayne.smith@lh.org.au

References

Hide All
1.Fisher, B, Anderson, S, Bryant, Jet al. Twenty-year follow-up of a randomised trial comparing total mastectomy, lumpectomy and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 2002; 347: 12331241.
2.Veronesi, U, Cascinelli, N, Mariani, Let al. Twenty-year follow-up of a randomised study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 2000; 347: 12271232.
3.Van Dongen, J A, Voogd, A C, Fentiman, I Set al. Long term results of a randomised trial comparing breast-conserving therapy with mastectomy: European Organisation for Research and Treatment of Cancer 10,801 trial. J Natl Cancer Inst 2000; 92: 11431150.
4.Al-Rahbi, Z S, Al Mandhari, Z, Ravichandran, Ret al. Dosimetric comparison of intensity modulated radiotherapy isocentric field plans and field in field (FIF) forward plans in the treatment of breast cancer. J Med Phys 2013; 38: 2229.
5.Trombetta, M, Julian, T B, Valakh, Vet al. Reduction in radiation-induced morbidity by use of an intercurrent boost in the management of early-stage breast cancer. Int J Radiat Oncol Biol Phys 2010; 77: 13031308.
6.Zelefsky, M J, Fuks, Z, Happersett, Let al. Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 2000; 55: 241249.
7.Longobardi, B, De Martin, E, Fiorino, Cet al. Comparing 3DCRT and inversely optimised IMRT planning for head and neck cancer: equivalence between step-and-shoot and sliding window techniques. Radiother Oncol 2005; 77: 148156.
8.Pignol, J, Olivotto, I, Rakovitch, Eet al. Phase III randomised study of intensity modulated radiation therapy versus standard wedging technique for adjuvant breast radiotherapy. Int J Radiat Oncol Biol Phys 2006; 66: 20852092.
9.Donovan, E, Bleakley, N, Denholm, Eet al. Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol 2007; 82: 254264.
10.Harsolia, A, Kestin, L, Grillis, Iet al. Intensity modulated radiotherapy results in significant decrease in clinical toxicities compared with conventional wedge-based breast radiotherapy. Int J Radiat Oncol Biol Phys 2007; 68: 13751380.
11.Freedman, G M, Anderson, P R, Li, Jet al. Intensity Modulated Radiation Therapy (IMRT) decreases acute skin toxicity for women receiving radiation for breast cancer. Am J Clin Oncol 2006; 29: 6670.
12.Hall, E J, Wuu, C-S. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003; 56: 8388.
13.Zhang, F, Zheng, M. Dosimetric evaluation of conventional radiotherapy, 3D conformal radiotherapy and direct machine parameter optimisation intensity-modulated radiotherapy for breast cancer after conservative surgery. J Med Imaging Radiat Oncol 2011; 55: 595602.
14.Mansouri, S, Naim, A, Glaria, L, Marsiglia, H. Dosimetric evaluation of 3-D conformal and intensity-modulated radiotherapy for breast cancer after conservative surgery. Asian Pac J of Cancer Prev 2014; 15: 47274732.
15.Abeyaratne, D. Can intensity modulated radiation therapy reduce cardiac dose in left-sided breast patients. Radiographer 2010; 57: 4044.
16.Ahunbay, E E, Chen, G P, Thatcher, Set al. Direct aperture optimisation-based intensity-modulated radiotherapy for whole breast irradiation. Int J Radiat Oncol Biol Phys 2007; 67: 12481258.
17.Descovich, M, Fowble, B, Bevan, A, Schechter, N, Park, C, Xia, P. Comparison between hybrid direct aperture optimised intensity-modulated radiotherapy and forward planning intensity-modulated radiotherapy for whole breast irradiation. Int J Radiat Oncol Biol Phys 2010; 76: 9199.
18.Mayo, C S, Urie, M M, Fitzgerald, T J. Hybrid IMRT plans—concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. Int J Radiat Oncol Biol Phys 2005; 61: 922932.
19.Farace, P, Zucca, S, Solla, Iet al. Planning hybrid intensity modulated radiation therapy for whole-breast irradiation. Int J Radiat Oncol Biol Phys 2012; 84: e115e122.
20.Peulen, H, Hanbeukers, B, Boersma, Let al. Forward intensity-modulated radiotherapy planning in breast cancer to improve dose homogeneity: feasibility of class solutions. Int J Radiat Oncol Biol Phys 2012; 82: 394400.
21.Hurkmans, C W, Meijer, G J, van Vliet-Vroegindeweij, Cet al. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimisation. Int J Radiat Oncol Biol Phys 2006; 66: 923930.
22.Offersen, B V, Boersma, L J, Kirkove, Cet al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother Oncol 2015; 114: 310.
23.Jameson, M G, Holloway, L C, Vial, P J, Vinod, S K, Metcalfe, P E. A review of methods of analysis in contouring studies for radiation oncology. J Med Imaging Radiat Oncol 2010; 54: 401410.
24.Feuvret, L, Noel, G, Mazeron, J J, Bey, P. Conformity index—a review. Int J Radiat Oncol Biol Phys 2006; 64: 333342.
25.Kataria, T, Sharma, K, Subramani, V, Karrthick, K P, Bisht, S S. Homogeneity index: an objective tool for assessment of conformal radiation treatments’. J Med Phys 2012; 34: 207213.
26.ICRU. International Commission on Radiation Units and Measurements; Prescribing recording and reporting photon-beam intensity-modulated Radiation Therapy (IMRT), ICRU Report 83. J ICRU 2010; 10: 1106.
27.Marks, L B, Bentzen, S M, Deasy, J Oet al. QUANTEC: organ specific paper, thorax: lung, radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 2010; 76: S70S76.
28.Xie, X, Ouyang, S, Wang, Het al. Dosimetric comparison of left-sided whole breast irradiation with 3D-CRT, IP-IMRT and hybrid IMRT. Oncol Rep 2014; 31: 21952205.
29.Shiau, A, Hsieh, C, Tien, Het al. Left-sided whole breast irradiation with hybrid-IMRT and helical tomotherapy dosimetric comparison. BioMed Res Int 2014; 2014: Article ID 741326. doi:10.1155/2014/741326.
30.Gagliardi, G, Constine, L S, Moiseenko, Vet al. QUANTEC: organ specific paper, thorax: heart, radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 2010; 76: S77S85.
31.Darby, S C, Ewertz, M, McGale, Pet al. Risk of ischemic heart disease in women dafter radiotherapy for breast cancer. N Eng J Med 2013; 368: 987998.
32.Henson, K E, McGale, P, Taylor, C, Darby, S C. Radiation-related mortality from heart disease and lung cancer more than 20 years after radiotherapy for breast cancer. Br J Cancer 2013; 108: 179182.
33.Correa, C R, Das, I J, Litt, H Iet al. Association between tangential beam treatment parameters and cardiac abnormalities after definitive radiation treatment for left-sided breast cancer. Int J Radiat Oncol Biol Phys 2008; 72: 508516.
34.Darby, S C, McGale, P, Taylor, C W, Peto, R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 2005; 6: 557565.
35.Lind, P A, Pagnanelli, R, Marks, L Bet al. Myocardial perfusion changes in patients irradiated for left-sided breast cancer and correlation with coronary artery distribution. Int J Radiat Oncol Biol Phys 2003; 55: 914920.
36.Evans, E S, Prosnitz, R G, Yu, Xet al. Impact of patient-specific factors, irradiated left ventricular volume, and treatment set-up errors on the development of myocardial perfusion defects after radiation therapy for left-sided breast cancer. Int J Radiat Oncol Biol Phys 2006; 66: 11251134.
37.Guerrero, M, Li, X A, Earl, M A, Safraraz, M, Kiggundu, E. Simultaneous integrated boost for breast cancer using IMRT: a radiobiological and treatment planning study. Int J Radiat Oncol Biol Phys 2004; 59: 15131522.
38.Korreman, S S, Pedersen, A N, Aarup, L R, Nottrup, T J, Specht, L, Nystrom, H. Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 2006; 65: 13751380.
39.Sung, K, Lee, K C, Lee, S H, Ahn, S H, Lee, S H, Choi, J. Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer. Radiat Oncol J 2014; 32: 8494.
40.Swanson, T, Grills, I, Ye, Het al. Six-year experience routinely utilising moderate deep inspiration breath-hold (MDIBH) for the reduction of cardiac dose in left-sided breast irradiation for patients with early stage or locally advanced breast cancer. Am J Clin Oncol 2013; 36: 2430.
41.Williams, T N, Moran, J M, Hsu, H Set al. Contralateral breast dose after whole-breast irradiation: an analysis by treatment technique. Int J Radiat Oncol Biol Phys 2012; 82: 20792085.
42.Woo, T C S, Pignol, J P, Rakovitch, Eet al. Body radiation exposure in breast cancer radiotherapy: impact of breast IMRT and virtual wedge compensation techniques. Int J Radiat Oncol Biol Phys 2006; 65: 5258.
43.Fernando, I N, Ford, H T, Powles, T Jet al. Factors affecting acute skin toxicity in patients having breast irradiation after conservative surgery: a prospective study of treatment practice at the royal Marsden hospital. Clin Oncol (R Coll Radiol) 1996; 8: 226233.
44.Vicini, F A, Sharpe, M, Kestin, Let al. Optimising breast cancer treatment efficacy with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2002; 54: 13361344.
45.Johansson, S, Svensson, H, Denekamp, J. Dose response and latency for radiation-induced fibrosis, edema, and neuropathy in breast cancer patients. Int J Radiat Oncol Biol Phys 2002; 52: 12071219.
46.Pignol, J, Olivotto, I, Rakovitvh, Eet al. A multicentre randomised trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol 2008; 26: 20852092.
47.Back, M, Guerrieri, M, Wratten, C, Steigler, A. Impact of radiation therapy on acute toxicity in breast conservation therapy for early breast cancer. J Clin Oncol 2004; 16: 1213.
48.Mihai, A, Rakovitch, E, Sixel, Ket al. Inverse vs. forward breast IMRT planning. Med Dosim 2005; 30: 149154.
49.Schubert, L K, Gondi, V, Sengbusch, Eet al. Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT helical tomotherapy, and topotherapy. Radiother Oncol 2011; 100: 241246.
50.Singla, R, King, S, Albuquerque, K, Creech, S, Dogan, N. Simultaneous-integrated boost intensity-modulated radiation therapy (SIB-IMRT) in the treatment of early-stage left-sided breast carcinoma. Med Dosim 2006; 31: 190196.
51.Small, K, Kelly, C, Beldham-Collins, R, Gebski, V. Whole breast and excision cavity radiotherapy plan comparison: conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost. J Med Radiat Sci 2012; 60: 1624.
52.Bartelink, H, Maingon, P, Poortmans, Pet al. On behalf of the European organisation for research and treatment of cancer radiation oncology and breast cancer groups, whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet 2015; 16: 4756.
53.Early Breast Cancer Trialists’ Collaborative Group. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 366: 20872106.
54.Freedman, G M, Anderson, P R, Bleicher, R Jet al. Five-year local control in a phase II study of hypofractionated intensity modulated radiation therapy with an incorporated boost for early stage breast cancer. Int J Radiat Oncol Biol Phys 2012; 84: 888893.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed