Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T18:25:29.642Z Has data issue: false hasContentIssue false

Evaluation of the impact of teaching on delineation variation during a virtual stereotactic ablative radiotherapy contouring workshop

Published online by Cambridge University Press:  10 December 2021

Finbar Slevin*
Affiliation:
Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK University of Leeds, Leeds, UK
Romélie Rieu
Affiliation:
The Royal Marsden NHS Foundation Trust, London, UK
Matthew Beasley
Affiliation:
Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
Richard Speight
Affiliation:
Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
Katharine Aitken
Affiliation:
The Royal Marsden NHS Foundation Trust, London, UK The Institute of Cancer Research, London, UK
James Good
Affiliation:
University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Fiona McDonald
Affiliation:
The Royal Marsden NHS Foundation Trust, London, UK The Institute of Cancer Research, London, UK
Thomas Rackley
Affiliation:
Velindre Cancer Centre, Cardiff, UK
Ganesh Radhakrishna
Affiliation:
The Christie NHS Foundation Trust, Manchester, UK
Anoop Haridass
Affiliation:
The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
Louise J. Murray
Affiliation:
Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK University of Leeds, Leeds, UK
Alison C. Tree
Affiliation:
The Royal Marsden NHS Foundation Trust, London, UK The Institute of Cancer Research, London, UK
Ann M. Henry
Affiliation:
Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK University of Leeds, Leeds, UK
*
Author for correspondence: Finbar Slevin, Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Beckett Street, Leeds LS9 7TF, UK. E-mail: finbarslevin@nhs.net

Abstract

Introduction:

Variation in delineation of target volumes/organs at risk (OARs) is well recognised in radiotherapy and may be reduced by several methods including teaching. We evaluated the impact of teaching on contouring variation for thoracic/pelvic stereotactic ablative radiotherapy (SABR) during a virtual contouring workshop.

Materials and methods:

Target volume/OAR contours produced by workshop participants for three cases were evaluated against reference contours using DICE similarity coefficient (DSC) and line domain error (LDE) metrics. Pre- and post-workshop DSC results were compared using Wilcoxon signed ranks test to determine the impact of teaching during the workshop.

Results:

Of 50 workshop participants, paired pre- and post-workshop contours were available for 21 (42%), 20 (40%) and 22 (44%) participants for primary lung cancer, pelvic bone metastasis and pelvic node metastasis cases, respectively. Statistically significant improvements post-workshop in median DSC and LDE results were observed for 6 (50%) and 7 (58%) of 12 structures, respectively, although the magnitude of DSC/LDE improvement was modest in most cases. An increase in median DSC post-workshop ≥0·05 was only observed for GTVbone, IGTVlung and SacralPlex, and reduction in median LDE > 1 mm was only observed for GTVbone, CTVbone and SacralPlex. Post-workshop, median DSC values were >0·7 for 75% of structures. For 92% of the structures, post-workshop contours were considered to be acceptable or within acceptable variation following review by the workshop faculty.

Conclusions:

This study has demonstrated that virtual SABR contouring training is feasible and was associated with some improvements in contouring variation for multiple target volumes/OARs.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Joint first authors

Joint senior authors

References

Jameson, M G, Holloway, L C, Vial, P J, Vinod, S K, Metcalfe, P E. A review of methods of analysis in contouring studies for radiation oncology. J Med Imaging Radiat Oncol 2010; 54 (5): 401410.CrossRefGoogle ScholarPubMed
Vinod, S K, Min, M, Jameson, M G, Holloway, L C. A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology. J Med Imaging Radiat Oncol 2016; 60 (3): 393406.CrossRefGoogle ScholarPubMed
Gwynne, S, Gilson, D, Dickson, J, McAleer, S, Radhakrishna, G. Evaluating target volume delineation in the era of precision radiotherapy: FRCR, revalidation and beyond. Clin Oncol 2017; 29 (7): 436438.CrossRefGoogle ScholarPubMed
Njeh, C F. Tumor delineation: the weakest link in the search for accuracy in radiotherapy. J Med Phys 2008; 33 (4): 136140.CrossRefGoogle ScholarPubMed
Peters, L J, O’Sullivan, B, Giralt, J et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J Clin Oncol 2010; 28 (18): 29963001.CrossRefGoogle ScholarPubMed
Weber, D C, Tomsej, M, Melidis, C, Hurkmans, C W. QA makes a clinical trial stronger: evidence-based medicine in radiation therapy. Radiother Oncol 2012; 105 (1): 48.CrossRefGoogle ScholarPubMed
Royal College of Radiologists. Radiotherapy target volume definition and peer review – RCR guidance. 2017. https://www.rcr.ac.uk/publication/radiotherapy-target-volume-definition-and-peer-review. Accessed on 20th January 2021.Google Scholar
Weiss, E, Hess, C F. The Impact of Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) definition on the total accuracy in radiotherapy. Strahlenther Onkol 2003; 179 (1): 2130.CrossRefGoogle ScholarPubMed
Walls, G M, Hanna, G G, McAleer, J J. Learning radiotherapy: the state of the art. BMC Med Educ 2020; 20 (1): 150.CrossRefGoogle ScholarPubMed
Datta, S T, Davies, S J. Training for the future NHS: training junior doctors in the United Kingdom within the 48-hour European working time directive. BMC Med Educ 2014; 14 (Suppl 1): S12.CrossRefGoogle ScholarPubMed
De Bari, B, Dahele, M, Palmu, M, Kaylor, S, Schiappacasse, L, Guckenberger, M. Short interactive workshops reduce variability in contouring treatment volumes for spine stereotactic body radiation therapy: experience with the ESTRO FALCON programme and EduCase™ training tool. Radiother Oncol 2018; 127 (1): 150153.CrossRefGoogle ScholarPubMed
Dewas, S, Bibault, J E, Blanchard, P et al. Delineation in thoracic oncology: a prospective study of the effect of training on contour variability and dosimetric consequences. Radiat Oncol 2011; 6: 118.CrossRefGoogle ScholarPubMed
Khoo, E L H, Schick, K, Plank, A W et al. Prostate contouring variation: can it be fixed? Int J Radiat Oncol Biol Phys 2012; 82 (5): 19231929.CrossRefGoogle ScholarPubMed
NHS England. Stereotactic ablative radiotherapy (SABR) for patients with metachronous extracranial oligometastatic cancer (all ages). 2020. https://www.england.nhs.uk/publication/stereotactic-ablative-radiotherapy-sabr-for-patients-with-metachronous-extracranial-oligometastatic-cancer-all-ages/. Accessed on 20th January 2021.Google Scholar
Vaassen, F, Hazelaar, C, Vaniqui, A et al. Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy. Phys Imaging Radiat Oncol 2020; 13: 16.CrossRefGoogle ScholarPubMed
Vinod, S K, Jameson, M G, Min, M, Holloway, L C. Uncertainties in volume delineation in radiation oncology: a systematic review and recommendations for future studies. Radiother Oncol 2016; 121 (2): 169179.CrossRefGoogle ScholarPubMed
Dice, L R. Measures of the amount of ecologic association between species. Ecology 1945; 26 (3): 297302.CrossRefGoogle Scholar
Rivin del Campo, E, Rivera, S, Martínez-Paredes, M et al. Assessment of the novel online delineation workshop dummy run approach using FALCON within a European multicentre trial in cervical cancer (RAIDs). Radiother Oncol 2017; 124 (1): 130138.CrossRefGoogle ScholarPubMed
Wickham, H. ggplot2: elegant graphics for data analysis. 2016. https://ggplot2.tidyverse.org. Accessed on 26th January 2021.CrossRefGoogle Scholar
Cacicedo, J, Navarro-Martin, A, Gonzalez-Larragan, S, De Bari, B, Salem, A, Dahele, M. Systematic review of educational interventions to improve contouring in radiotherapy. Radiother Oncol 2020; 144: 8692.CrossRefGoogle ScholarPubMed
Eriksen, J G, Salembier, C., Rivera, S et al. Four years with FALCON – an ESTRO educational project: achievements and perspectives. Radiother Oncol 2014; 112 (1): 145149.CrossRefGoogle Scholar
D’Souza, L., Jaswal, J, Chan, F et al. Evaluating the impact of an integrated multidisciplinary head & neck competency-based anatomy & radiology teaching approach in radiation oncology: a prospective cohort study. BMC Med Educ 2014; 14: 124.CrossRefGoogle ScholarPubMed
Szumacher, E, Harnett, N, Warner, S et al. Effectiveness of educational intervention on the congruence of prostate and rectal contouring as compared with a gold standard in three-dimensional radiotherapy for prostate. Int J Radiat Oncol Biology Phys 2010; 76 (2): 379385.CrossRefGoogle Scholar
Hall, W H, Guiou, M, Lee, N Y et al. Development and validation of a standardized method for contouring the Brachial Plexus: preliminary dosimetric analysis among patients treated with IMRT for Head-and-Neck Cancer. Int J Radiat Oncol Biol Phys 2008; 72 (5): 13621367.CrossRefGoogle ScholarPubMed
Mir, R, Kelly, S M, Xiao, Y et al. Organ at risk delineation for radiation therapy clinical trials: global Harmonization Group consensus guidelines. Radiother Oncol 2020; 150: 3039.CrossRefGoogle ScholarPubMed
UK SABR Consortium. Stereotactic Ablative Radiotherapy (SABR): a resource (version 6.1). 2019. https://www.sabr.org.uk/wp-content/uploads/2019/04/SABRconsortium-guidelines-2019-v6.1.0.pdf. Accessed on 8th February 2021.Google Scholar
Yi, S K, Mak, W, Yang, C C et al. Development of a standardized method for contouring the Lumbosacral Plexus: a preliminary dosimetric analysis of this organ at risk among 15 patients treated with intensity-modulated radiotherapy for lower gastrointestinal cancers and the incidence of radiation-induced Lumbosacral Plexopathy. Int J Radiat Oncol Biol Phys 2012; 84 (2): 376382.CrossRefGoogle ScholarPubMed
American Association of Physicists in Medicine. Report No. 263 – Standardizing Nomenclatures in Radiation Oncology. 2018. https://www.aapm.org/pubs/reports/detail.asp?docid=171. Accessed on 8th February 2021.Google Scholar
De la Pinta, C. SBRT in non-spine bone metastases: a literature review. Med Oncol 2020; 37 (12): 119.CrossRefGoogle ScholarPubMed
Wright, J L, Yom, S S, Awan, M J et al. Standardizing normal tissue contouring for radiation therapy treatment planning: an ASTRO consensus paper. Pract Radiat Oncol 2019; 9 (2): 6572.CrossRefGoogle ScholarPubMed
Duke, S L, Tan, L T, Jensen, N B K et al. Implementing an online radiotherapy quality assurance programme with supporting continuous medical education – report from the EMBRACE-II evaluation of cervix cancer IMRT contouring. Radiother Oncol 2020; 147: 2229.CrossRefGoogle ScholarPubMed
Ackerly, T, Andrews, J, Ball, D, Guerrieri, M, Healy, B, Williams, I. Discrepancies in volume calculations between different radiotherapy treatment planning systems. Australas Phys Eng Sci Med 2003; 26 (2): 9193.CrossRefGoogle ScholarPubMed
Brock, K K, Dawson, L A, Sharpe, M B, Moseley, D J, Jaffray, D A. Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int J Radiat Oncol Biol Phys 2006; 64 (4): 12451254.CrossRefGoogle ScholarPubMed
Fotina, I, Lütgendorf-Caucig, C, Stock, M, Pötter, R, Georg, D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther Onkol 2012; 188 (2): 160167.CrossRefGoogle ScholarPubMed
Hanna, G G, Hounsell, A R, O’Sullivan, J M. Geometrical analysis of radiotherapy target volume delineation: a systematic review of reported comparison methods. Clin Oncol 2010; 22 (7): 515525.CrossRefGoogle ScholarPubMed
Maurer, C R, Rensheng, Q, Raghavan, V. A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans Pattern Anal Mach Intell 2003; 25 (2): 265270.CrossRefGoogle Scholar
Taha, A A, Hanbury, A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 2015; 15: 29.CrossRefGoogle ScholarPubMed
Murray, P, Franks, K, Hanna, G G. A systematic review of outcomes following stereotactic ablative radiotherapy in the treatment of early-stage primary lung cancer. Br J Radiol 2017; 90 (1071): 20160732.CrossRefGoogle ScholarPubMed
Trakul, N, Koong, A C, Chang, D T. Stereotactic body radiotherapy in the treatment of pancreatic cancer. Semin Radiat Oncol 2014; 24 (2): 140147.CrossRefGoogle ScholarPubMed
Cox, S., Cleves, A, Clementel, E, Miles, E, Staffurth, J, Gwynne, S. Impact of deviations in target volume delineation – time for a new RTQA approach? Radiother Oncol 2019; 137: 18.CrossRefGoogle ScholarPubMed
Gwynne, S, Spezi, E, Sebag-Montefiore, D et al. Improving radiotherapy quality assurance in clinical trials: assessment of target volume delineation of the pre-accrual benchmark case. Br J Radiol 2013; 86 (1024): 20120398.CrossRefGoogle ScholarPubMed
Gwynne, S, Jones, G, Maggs, R et al. Prospective review of radiotherapy trials through implementation of standardized multicentre workflow and IT infrastructure. Br J Radiol 2016; 89 (1064): 20160020.CrossRefGoogle ScholarPubMed
Evans, E, Radhakrishna, G, Gilson, D et al. Target volume delineation training for clinical oncology trainees: the Role of ARENA and COPP. Clin Oncol (R Coll Radiol) 2019; 31 (6): 341343.CrossRefGoogle ScholarPubMed
Roques, T W. Patient selection and radiotherapy volume definition — can we improve the weakest links in the treatment chain? Clin Oncol 2014; 26 (6): 353355.CrossRefGoogle ScholarPubMed
Supplementary material: File

Slevin et al. supplementary material

Slevin et al. supplementary material

Download Slevin et al. supplementary material(File)
File 96.7 KB