Skip to main content Accessibility help
×
Home

Effects of density from various hip prosthesis materials on 6 MV photon beam: a Monte Carlo study

  • M. Z. Abdul Aziz (a1), F. N. Mohd Kamarulzaman (a2), N. A. S. Mohd Termizi (a2), N. Abdul Raof (a1) and A. A. Tajuddin (a2)...

Abstract

In radiotherapy planning, computed tomography (CT) images are used to calculate the dose in the patient. However, a high density hip prosthesis can cause streaking artefacts in CT images, which make dose calculations for nearby organs inaccurate. This study aim to quantify the impact of a hip prosthesis on 6 MV photon beam dose distribution using the Monte Carlo (MC) simulation. To quantify the radiation dose at the hip prosthesis accurately, image processing techniques were used to generate CT images free from streak artefacts. MATLAB software was used to produce computer-generated phantoms consisting of bone, titanium, stainless steel and CoCrMo. Percentage depth dose (PDD) and beam profile were used to analyse the impact of the hip prosthesis on the dose distribution of the photon beam. PDD showed that the absorbed dose was reduced as the density of the material increased, and the dose was reduced by as much as 49% when the photon beam struck the highest density material (CoCrMo, 8·2g/cm3). However, dose was increased at the tissue-hip prosthesis interface (depths of 4 and 19cm). As the depth increased, the absorbed dose decreased due to attenuation of photons by the tissue and the metal.

Copyright

Corresponding author

Correspondence to: M. Z. Abdul Aziz, Oncological and Radiological Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia. E-mail: mr.zahri@gmail.com

References

Hide All
1. Palleri, F, Baruffaldi, F, Angelini, A L, Ferri, A, Spezi, E. Monte Carlo characterization of materials for prosthetic implants and dosimetric validation of Pinnacle TPS. Nucl Instrum Methods Phys Res B 2008; 266: 50015006.
2. Reynaert, N, Van de Marck, S C, Schaart, D R et al. Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem 2007; 76: 643686.
3. Abdul Aziz, M Z, Yusoff, A L, Osman, N D, Abdullah, R, Rabaie, N A, Salikin, M S. Monte Carlo dose calculation in dental amalgam phantom. J Med Phys 2015; 40: 150155.
4. Bazalova, M, Beaulieu, L, Palefsky, S, Verhaegena, F. Correction of CT artefacts and its influence on Monte Carlo dose calculations. Med Phys 2007; 34: 21192132.
5. Osman, N D, Salikin, M S, Saripan, M I, Aziz, M Z A, Daud, N M. Metal artefact correction algorithm based-on DSAT technique for CT images. 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), 8–10 December 2014, Kuala Lumpur, pp. 324-327, 2014.
6. Abdoli, M, Mohammad Reza, A Y, Ahmadian, A, Sahba, N, Zaidi, H. A novel approach for reducing dental filling artifact in CT-based attenuation correction of PET data. IFMBE Proc 2009; 22: 492495.
7. Abdul Aziz, M Z, Yusoff, A L, Salikin, M S. Monte Carlo electron beam dose distribution near high density inhomogeneities interfaces. World Acad Sci Eng Technol 2011; 58: 338341.
8. Aljamal, M, Zakaria, A. Monte Carlo modelling of a Siemens Primus 6 MV photon beam linear accelerator. Aust J Basic Appl Sci 2013; 7 (10): 340346.
9. Toossi, M T B, Ghorbani, M, Akbari, F, Sabet, L S, Mehrpouyan, M. Monte Carlo simulation of electron modes of a Siemens Primus linac (8, 12 and 14 MeV). J Radiother Pract 2013; 12: 352359.
10. International Commission on Radiation Units and Measurements. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues (Report 46). Washington, DC: ICRU, 1992.
11. Wieslander, E, Knoos, T. Dose perturbation in the presence of metallic implants: treatment planning system versus Monte Carlo simulations. Phys Med Biol 2003; 48: 32953305.
12. Bazalova, M, Coolens, C, Cury, F, Childs, P, Beaulieu, L, Verhaegen, F. Monte Carlo dose calculation for phantoms with hip prosthesis. J Phys Conf Ser 2008; 102: 18.

Keywords

Effects of density from various hip prosthesis materials on 6 MV photon beam: a Monte Carlo study

  • M. Z. Abdul Aziz (a1), F. N. Mohd Kamarulzaman (a2), N. A. S. Mohd Termizi (a2), N. Abdul Raof (a1) and A. A. Tajuddin (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed