Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-13T05:05:48.918Z Has data issue: false hasContentIssue false

Dosimetric evaluation of VMAT treatment plans for patients with stage IIB or III non-small cell lung carcinomas

Published online by Cambridge University Press:  31 May 2023

Amani Shaaer
Affiliation:
Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Biomedical Physics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
Ernest Osei*
Affiliation:
Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
Johnson Darko
Affiliation:
Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
Darin Gopaul
Affiliation:
Department of Radiation Oncology, Grand River Regional Cancer Centre, Kitchener, ON, Canada
*
Corresponding author: Ernest Osei; Email: Ernest.osei@grhosp.on.ca

Abstract

Introduction:

Volumetric-modulated arc therapy (VMAT) has emerged as a promising radiation treatment technique. One of the challenges in VMAT planning for lung carcinoma is the lack of consistency among different institutions with respect to what is considered an acceptable treatment plan in terms of target coverage and doses to the organs at risk (OAR). Additionally, the accuracy of dose calculations in the presence of heterogeneous medium (i.e. air) is another challenge in lung VMAT planning. Our objective is to develop an institutional criteria for non-stereotactic body radiotherapy (non-SBRT) lung treatment plans by evaluating the dosimetric impact of plan normalisation and dose calculation algorithms, including the Anisotropic Analytical Algorithm (AAA), AcurosXB (AXB) and Monte Carlo (MC) simulation, on VMAT plans for non-small cell lung cancer (NSCLC).

Methods:

The CT dataset of 20 patients with NSCLC was randomly selected to ensure a spectrum of target sizes and locations. All treatment planning was accomplished with 2–3 VMAT arcs and a prescription of 60 Gy in 30 fractions. Two plan normalisation methods were employed: (i) planning target volume (PTV) V100% = 95% and (ii) PTV V95% = 95%.

Results:

All three dose calculation algorithms revealed heterogeneous and conformal plans irrespective of plan normalisations. The PTV and OARs dose–volume constraints were met using both normalisation methods. However, we observed that AAA overestimated the minimum PTV doses by 2–5% regardless of plan normalisation. The mean PTV-V100% was lower for AAA in comparison with AXB and MC algorithms.

Conclusions:

VMAT is an effective radiotherapy technique for achieving greater target dose conformity, heterogeneity and dose fall-off from the PTV for the treatment of NSCLC. The results of this study can provide the basis for the development of local plan acceptability criteria for NSCLC VMAT plans, and the clinical implementation can be achieved with minimal or no imposition on resources and time constraints. Occasionally, plan normalisation of PTV-V95% = 95% may be required to ensure that the OAR dose tolerances are not exceeded.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Canadian Cancer Society. Canadian Cancer Statistics 2021. Published 2021. https://cancer.ca/en/research/cancer-statistics/canadian-cancer-statistics. Accessed on 3rd February 2022.Google Scholar
Brenner, DR, Poirier, A, Woods, R, et al. Projected estimates of cancer in Canada in 2022. CMAJ 2022; 194: E601E607. doi: 10.1503/cmaj.212097 CrossRefGoogle Scholar
Molina, JR, Yang, P, Cassivi, SD, Schild, SE, Adjei, AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008; 83 (5): 584594. doi: 10.4065/83.5.584 CrossRefGoogle ScholarPubMed
Lang-Lazdunski, L. Surgery for nonsmall cell lung cancer. Eur Respirat Rev 2013; 22 (129): 382404. doi: 10.1183/09059180.00003913 CrossRefGoogle ScholarPubMed
Cortés, ÁA, Urquizu, LC, Cubero, JH. Adjuvant chemotherapy in non-small cell lung cancer: state-ofthe-art. Transl Lung Cancer Res 2015; 4 (2): 191197. doi: 10.3978/j.issn.2218-6751.2014.06.01 Google Scholar
Lee, S, Lee, D, Verma, V, et al. Dosimetric benefits of dynamic conformal arc therapy-combined with active breath-hold in lung stereotactic body radiotherapy. Med Dosim 2022; 47 (1): 5460. doi: 10.1016/j.meddos.2021.08.004 CrossRefGoogle ScholarPubMed
Yu, S, Xu, H, Sinclair, A, Zhang, X, Langner, U, Mak, K. Dosimetric and planning efficiency comparison for lung SBRT: cyberKnife vs VMAT vs knowledge-based VMAT. Med Dosim 2020; 45 (4): 346351. doi: 10.1016/j.meddos.2020.04.004 CrossRefGoogle ScholarPubMed
Sun, B, Brooks, E, Komaki, R, et al. 7-year follow-up after stereotactic ablative radiotherapy for patients with stage I non small cell lung cancer: results of a phase 2 clinical trial. Cancer 2017; 123: 30313039. doi: 10.1002/cncr.30693 CrossRefGoogle Scholar
Timmerman, R, Paulus, R, Galvin, J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. J Am Med Assoc 2010; 303 (11): 10701076. doi: 10.1001/jama.2010.261.Stereotactic CrossRefGoogle ScholarPubMed
Schonewolf, CA, Heskel, M, Doucette, A, et al. Five-year long-term outcomes of stereotactic body radiation therapy for operable versus medically inoperable stage I non–small-cell lung cancer: analysis by operability, fractionation regimen, tumor size, and tumor location. Clin Lung Cancer 2019; 20 (1): e63e71. doi: 10.1016/j.cllc.2018.09.004 CrossRefGoogle Scholar
Bezjak, A, Temin, S, Franklin, G, et al. Definitive and adjuvant radiotherapy in locally advanced non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline endorsement of the American Society for Radiation Oncology evidence-based clinical practice guideline. J Clin Oncol 2015; 33 (18): 21002105. doi: 10.1200/JCO.2014.59.2360 CrossRefGoogle Scholar
Curran, WJ, Paulus, R, Langer, CJ, et al. Sequential vs concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst 2011; 103 (19): 14521460. doi: 10.1093/jnci/djr325 CrossRefGoogle ScholarPubMed
De Ruysscher, D, Vansteenkiste, J, Belderbos, J, Decaluwé, H, Dingemans, AM. The optimal local treatment of stage IIIA-N2 NSCLC: is the issue finally settled? J Thorac Oncol 2016; 11 (3): 284286. doi: 10.1016/j.jtho.2016.01.003 CrossRefGoogle ScholarPubMed
Jiang, X, Li, T, Liu, Y, et al. Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT). Radiat Oncol 2011; 6 (1): 17. doi: 10.1186/1748-717X-6-140 CrossRefGoogle ScholarPubMed
Bedford, JL, Nordmark Hansen, V, Mcnair, HA, et al. Treatment of lung cancer using volumetric modulated arc therapy and image guidance: a case study. Acta Oncol (Madr) 2008; 47 (7): 14381443. doi: 10.1080/02841860802282778 CrossRefGoogle ScholarPubMed
McGrath, SD, Matuszak, MM, Yan, D, Kestin, LL, Martinez, AA, Grills, IS. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: a dosimetric and treatment efficiency analysis. Radiother Oncol 2010; 95 (2): 153157. doi: 10.1016/j.radonc.2009.12.039 CrossRefGoogle ScholarPubMed
Holt, A, Van Vliet-Vroegindeweij, C, Mans, A, Belderbos, JS, Damen, EMF. Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys 2011; 81 (5): 15601567. doi: 10.1016/j.ijrobp.2010.09.014 CrossRefGoogle ScholarPubMed
Perez, CA, Stanley, K, Brady, L, Brown, GS, Rotman, M, Seydel, G. A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-oat-cell carcinoma of the lung. Preliminary report by the Radiation Therapy Oncology Group. Cancer 1980; 45: 27442753.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Bradley, J, Paulus, R, Komaki, R, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial p. Lancet Oncol 2015; 16 (2): 187199. doi: 10.1016/S1470-2045(14)71207-0 CrossRefGoogle ScholarPubMed
Bradley, JD, Hu, C, Komaki, RR, et al. Long-term results of NRG oncology RTOG 0617: standard-versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J Clin Oncol 2020; 38 (7): 706714. doi: 10.1200/JCO.19.01162 CrossRefGoogle ScholarPubMed
Bradley, J, Graham, M V., Winter, K, et al. Toxicity and outcome results of RTOG 9311: a phase I-II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 2005; 61 (2): 318328. doi: 10.1016/j.ijrobp.2004.06.260 CrossRefGoogle ScholarPubMed
Iyengar, P, Zhang-Velten, E, Court, L, et al. Accelerated hypofractionated image-guided vs conventional radiotherapy for patients with stage II/III non-small cell lung cancer and poor performance status: a randomized clinical trial. J Am Med Assoc Oncol 2021. doi: 10.1001/jamaoncol.2021.3186 CrossRefGoogle Scholar
Antonella, F, Giorgia, N, Alessandro, C, Eugenio, V, Pietro, M, Luca, C. Dosimetric evaluation of Acuros XB advanced dose calculation algorithm in heterogeneous media. Radiat Oncol 2011; 6. doi: 10.1186/1748-717X-6-82 CrossRefGoogle Scholar
Sievinen, J, Ulmer, W, Kaissl, W. AAA photon dose calculation model in Eclipse. Palo Alto (CA): Varian Med Syst 2005; Varian doc: 123.Google Scholar
Breitman, K, Rathee, S, Newcomb, C, et al. Experimental validation of the Eclipse AAA algorithm. J Appl Clin Med Phys 2007; 8 (2): 7692. doi: 10.1120/jacmp.v8i2.2350 CrossRefGoogle ScholarPubMed
Osei, E, Darko, J, Swanson, S, et al. Dosimetric evaluation of SBRT treatment plans of non-central lung tumours: clinical experience. J Radiother Pract 2020: 1333. doi: 10.1017/S146039692000103X CrossRefGoogle Scholar
Li, Y, Wang, J, Tan, L, et al. Dosimetric comparison between IMRT and VMAT inirradiation for peripheral and central lung cancer. Oncol Lett 2018; 15 (3): 37353745. doi: 10.3892/ol.2018.7732 Google ScholarPubMed
Bourbonne, V, Lucia, F, Jaouen, V, et al. VMAT-based planning allows sparing of a spatial dose pattern associated with radiation pneumonitis in patients treated with radiotherapy for a locally advanced lung cancer. Cancers (Basel) 2022; 14 (15). doi: 10.3390/cancers14153702 CrossRefGoogle ScholarPubMed
Walters, B, Kawrakow, I, Rogers, DWO. DOSXYZnrc users manual. Source 2005: 1132.Google Scholar
Behinaein, S, Osei, E, Darko, J, Charland, P, Bassi, D. Evaluating small field dosimetry with the Acuros XB (AXB) and analytical anisotropic algorithm (AAA) dose calculation algorithms in the eclipse treatment planning system. J Radiother Pract 2019. doi: 10.1017/S1460396919000104 CrossRefGoogle Scholar
Weyh, A, Konski, A, Nalichowski, A, Maier, J, Lack, D. Lung SBRT: dosimetric and delivery comparison of rapidarc, tomotherapy, and IMRT. J Appl Clin Med Phys 2013; 14 (4): 313. doi: 10.1120/jacmp.v14i4.4065 CrossRefGoogle Scholar
Videtic, G, Hu, C, Singh, A, et al. NRG Oncology RTOG 0915 (NCCTG N0927): a randomized phase II study comparing 2 stereotactic body radiation therapy (SBRT) schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2015; 93 (4): 757764. doi: 10.1016/j.ijrobp.2015.07.2260.CrossRefGoogle Scholar
International Commission on Radiation Units and Measurements (ICRU). Prescribing, recording and reporting photon beam therapy. ICRU Rep 1999; 62: 1–25 (Supplement to ICRU Report 50).Google Scholar
Papiez, L, Kong, P, Co-Chair, S, Timmerman, RD. Radiation therapy oncology group RTOG 0813 Seamless phase I/II Study of stereotactic lung radiotherapy (SBRT) for early stage, centrally located, non-small cell lung cancer (NSCLC) in medically inoperable patients. 2009. Available at: https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-0813?filter=rtog-0813.Google Scholar
Bezjak, A, Paulus, R, Gaspar, LE, et al. Safety and efficacy of a five-fraction stereotactic body radiotherapy schedule for centrally located non-small-cell lung cancer: NRG Oncology/RTOG 0813 trial. 2019; 37. doi: 10.1200/JCO.18.00622 CrossRefGoogle Scholar
Lu, JY, Lin, Z, Lin, PX, Huang, BT. Optimizing the flattening filter free beam selection in RapidArc®-based stereotactic body radiotherapy for Stage I lung cancer. Br J Radiol 2015; 88 (1053). doi: 10.1259/bjr.20140827 CrossRefGoogle ScholarPubMed
Ong, CCH, Ang, KW, Soh, RCX, et al. Dosimetric comparison of peripheral NSCLC SBRT using Acuros XB and AAA calculation algorithms. Med Dosim 2017; 42 (3): 216222. doi: 10.1016/j.meddos.2017.05.005 CrossRefGoogle ScholarPubMed
Matsuoka, T, Araki, F, Ohno, T, Sakata, J, Tominaga, H. Dependence of volume dose indices on dose calculation algorithms for VMAT-SBRT plans for peripheral lung tumor. Med Dosim 2019; 44 (3): 284290. doi: 10.1016/j.meddos.2018.10.004 CrossRefGoogle ScholarPubMed
Chen, Y, Qu, J, Yang, J, Weiss, M, Sim, S, Liao, X. Planning and dosimetric comparisons of IMRT lung cancers with three advanced optimization algorithms. Int J Med Phys Clin Eng Radiat Oncol 2013; 02 (02): 5260. doi: 10.4236/ijmpcero.2013.22008 CrossRefGoogle Scholar
Muñoz-Montplet, C, Fuentes-Raspall, R, Jurado-Bruggeman, D, Agramunt-Chaler, S, Onsès-Segarra, A, Buxó, M. Dosimetric impact of Acuros XB dose-to-water and dose-to-medium reporting modes on lung stereotactic body radiation therapy and its dependency on structure composition. Adv Radiat Oncol 2021; 6 (4). doi: 10.1016/j.adro.2021.100722 Google ScholarPubMed
Liang, X, Penagaricano, J, Zheng, D, et al. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans. Radiat Oncol 2016; 11 (1). doi: 10.1186/s13014-015-0578-2 CrossRefGoogle ScholarPubMed
Kroon, PS, Hol, S, Essers, M. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol 2013; 8 (1). doi: 10.1186/1748-717X-8-149 CrossRefGoogle ScholarPubMed
Ojala, JJ, Kapanen, MK, Hyödynmaa, SJ, Wigren, TK, Pitkänen, MA. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys 2014; 15 (2): 418. doi: 10.1120/jacmp.v15i2.4662 CrossRefGoogle ScholarPubMed
Zhang, J, Jiang, D, Su, H, et al. Dosimetric comparison of different algorithms in stereotactic body radiation therapy (SBRT) plan for non-small cell lung cancer (NSCLC). Oncol Targets Ther 2019; 12: 63856391. doi: 10.2147/OTT.S201473 CrossRefGoogle ScholarPubMed
Webster, M, Tanny, S, Joyce, N, et al. New dosimetric guidelines for linear Boltzmann transport equations through comparative evaluation of stereotactic body radiation therapy for lung treatment planning. J Appl Clin Med Phys 2021; 22 (12): 115124. doi: 10.1002/acm2.13464 CrossRefGoogle ScholarPubMed
Chun, SG, Hu, C, Choy, H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol 2017; 35 (1): 5662. doi: 10.1200/JCO.2016.69.1378 CrossRefGoogle ScholarPubMed
Zhao, N, Yang, R, Wang, J, Zhang, X, Li, J. An IMRT/VMAT technique for nonsmall cell lung cancer. Biomed Res Int 2015; 2015. doi: 10.1155/2015/613060 CrossRefGoogle Scholar
Chen, Z, Wu, Z, Ning, W. Advances in molecular mechanisms and treatment of radiation-induced pulmonary fibrosis. Transl Oncol 2019; 12 (1):162169. doi: 10.1016/j.tranon.2018.09.009 CrossRefGoogle ScholarPubMed
Kang, KH, Okoye, CC, Patel, RB, et al. Complications from stereotactic body radiotherapy for lung cancer. Cancers (Basel) 2015; 7 (2): 9811004. doi: 10.3390/cancers7020820 CrossRefGoogle ScholarPubMed
Inoue, A, Kunitoh, H, Sekine, I, Sumi, M, Tokuuye, K, Saijo, N. Radiation pneumonitis in lung cancer patients: a retrospective study of risk factors and the long-term prognosis. Int J Radiat Oncol Biol Phys 2001; 49 (3): 649655. doi: 10.1016/S0360-3016(00)00783-5 CrossRefGoogle ScholarPubMed
Baker, S, Fairchild, A. Radiation-induced esophagitis in lung cancer. Lung Cancer: Targets Ther 2016; 7: 119127. doi: 10.2147/LCTT.S96443 Google ScholarPubMed
McCaughan, H, Boyle, S, McGoran, J. Update on the management of the gastrointestinal effects of radiation. World J Gastrointest Oncol 2021; 13 (5): 400408. doi: 10.4251/wjgo.v13.i5.400 CrossRefGoogle ScholarPubMed
Nieder, C, Pawinski, A, Andratschke, NH. Combined radio- and chemotherapy for non-small cell lung cancer: systematic review of landmark studies based on acquired citations. Front Oncol 2013; 3. doi: 10.3389/fonc.2013.00176 CrossRefGoogle Scholar
Bentzen, SM, Constine, LS, Deasy, JO, et al. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 2010; 76 (3 SUPPL.). doi: 10.1016/j.ijrobp.2009.09.040 CrossRefGoogle Scholar
Emami, D. Tolerance of normal tissue to therapeutic radiation. Rep Radiother Oncol 2013; 1 (1):3548.Google Scholar
Ming, X, Feng, Y, Liu, H, Zhang, Y, Zhou, L, Deng, J. Cardiac exposure in the dynamic conformal arc therapy, intensity-modulated radiotherapy and volumetric modulated arc therapy of lung cancer. PLoS One 2015; 10 (12). doi: 10.1371/journal.pone.0144211 CrossRefGoogle ScholarPubMed