Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T05:52:45.908Z Has data issue: false hasContentIssue false

Transitions in the surface dust-ion-acoustic mode in a self-gravitating semi-bounded magnetized dusty plasma

Published online by Cambridge University Press:  01 October 2007

HWA-MIN KIM
Affiliation:
Department of Electronics Engineering, Catholic University of Daegu, Hayang, Gyongsan, Gyungbuk 712-702, South Korea
YOUNG-DAE JUNG
Affiliation:
Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791, South Korea (ydjung@hanyang.ac.kr, yjung@hanyang.ac.kr)

Abstract

The transitions and the self-gravitational effects on the surface dust-ion-acoustic mode are investigated in semi-bounded magnetized dusty plasmas. We find that there is a dust-ion-acoustic resonance mode in small wave number regions. Furthermore, we find that the self-gravitational effects enhance the resonance frequency. However, the surface wave starts to propagate as the wave number increases. The transition position between the resonance oscillation and the wave propagation is shifted to the smaller wave number domain as self-gravitational effects increase. In addition, the resonance frequency is found to decrease with decreasing strength of the magnetic field in small wave number domains.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. Berlin: Springer.CrossRefGoogle Scholar
Aliev, Yu M., Schlüter, H. and Shivarova, A. 2000 Guided-wave-produced Plasmas. Berlin: Springer.CrossRefGoogle Scholar
Avinash, K. and Shukla, P. K. 1994 Phys. Lett. A 189, 470.CrossRefGoogle Scholar
Bharuthram, R. and Shukla, P. K. 1993 Planet. Space Sci. 41, 17.CrossRefGoogle Scholar
Bliokh, P., Sinitsin, V. and Yaroshenko, V. 1995 Dusty and Self-gravitational Plasma in Space. Dordrecht: Kluwer.CrossRefGoogle Scholar
Chang, W.-S., Jung, I. M. and Jung, Y.-D. 2006 J. Plasma Phys. 72, 485.CrossRefGoogle Scholar
Dopita, M. A. and Sutherland, R. S. 2003 Astrophysics of the Diffuse Universe. Berlin: Springer.CrossRefGoogle Scholar
Girka, V. O. and Girka, I. O. 2002 Plasma Phys. Rep. 28, 916.CrossRefGoogle Scholar
Gould, R. J. and Salpeter, E. E. 1963 Astrophys. J. 138, 393.CrossRefGoogle Scholar
Lee, H. J. 2000 Phys. Plasmas 7, 3818.CrossRefGoogle Scholar
Lee, M.-J. and Lee, H. J. 2005 Phys. Plasmas 12, 052104.CrossRefGoogle Scholar
Mendis, D. A. and Rosenberg, M. 1994 Ann. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Salimullah, M. and Shukla, P. K. 1999 Phys. Plasmas 6, 686.CrossRefGoogle Scholar
Shokri, B. and Jazi, B. 2003 Phys. Plasmas 10, 4622.CrossRefGoogle Scholar
Shukla, P. K. 1994 Phys. Plasmas 1, 1362.CrossRefGoogle Scholar
Shukla, P. K. 2002 Dust Plasma Interaction in Space. New York: Nova.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
Varma, R. K., Shukla, P. K. and Krishan, V.Phys. Rev. E 47, 3612.Google Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht: Kluwer.CrossRefGoogle Scholar
Verheest, F. and Shukla, P. K. 1997 Phys. Scripta 55, 83.CrossRefGoogle Scholar
Vladimirov, S. V., Ostrikov, K. and Samarian, A. A. 2005 Physics and Applications of Complex Plasmas. London: Imperial College Press.CrossRefGoogle Scholar