Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T17:41:50.511Z Has data issue: false hasContentIssue false

Test particle acceleration in resistive torsional fan magnetic reconnection using laboratory plasma parameters

Published online by Cambridge University Press:  10 December 2021

D.L. Chesny*
Affiliation:
SpaceWave, LLC, Satellite Beach, FL32937 OrangeWave Innovative Science, LLC, Moncks Corner, SC29461
N.B. Orange
Affiliation:
SpaceWave, LLC, Satellite Beach, FL32937 OrangeWave Innovative Science, LLC, Moncks Corner, SC29461 Etelman Observatory Research Center, University of the Virgin Islands, St. Thomas, USVI00802
K.W. Hatfield
Affiliation:
Department of Aerospace, Physics And Space Sciences, Florida Institute of Technology, Melbourne, FL32901
*
Email address for correspondence: orangewavedc@gmail.com

Abstract

Particle acceleration via magnetic reconnection is a fundamental process in astrophysical plasmas. Experimental architectures are able to confirm a wide variety of particle dynamics following the two-dimensional Sweet–Parker model, but are limited in their reproduction of the fan-spine magnetic field topology about three-dimensional (3-D) null points. Specifically, there is not yet an experiment featuring driven 3-D torsional magnetic reconnection. To move in this direction, this paper expands on recent work toward the design of an experimental infrastructure for inducing 3-D torsional fan reconnection by predicting feasible particle acceleration profiles. Solutions to the steady-state, kinematic, resistive magnetohydrodynamic equations are used to numerically calculate particle trajectories from a localized resistivity profile using well-understood laboratory plasma parameters. We confine a thin, 10 eV helium sheath following the snowplough model into the region of this localized resistivity and find that it is accelerated to energies of ${\approx }2$ keV. This sheath is rapidly accelerated and focused along the spine axis propagating a few centimetres from the reconnection region. These dynamics suggest a novel architecture that may hold promise for future experiments studying solar coronal particle acceleration and for technology applications such as spacecraft propulsion.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arefiev, A.V. & Breizman, B.N. 2004 Theoretical components of the VASIMR plasma propulsion concept. Phys. Plasmas 11 (5), 29422949.CrossRefGoogle Scholar
Bathgate, S.N., Bilek, M.M.M., Cairns, I.H. & McKenzie, D.R. 2018 A thruster using magnetic reconnection to create a high-speed plasma jet. Eur. Phys. J. Appl. Phys. 84 (2), 20801.CrossRefGoogle Scholar
Biskamp, D. 1986 Magnetic reconnection via current sheets. Phys. Fluids 29, 15201531.CrossRefGoogle Scholar
Brown, M.R., Cothran, C.D. & Fung, J. 2006 Two fluid effects on three-dimensional reconnection in the Swarthmore Spheromak experiment with comparisons to space dataa). Phys. Plasmas 13 (5), 056503.CrossRefGoogle Scholar
Büchner, J. 1999 Three-dimensional magnetic reconnection in astrophysical plasmas - kinetic approach. Astrophys. Space Sci. 264, 2542.CrossRefGoogle Scholar
Bures, B.L., Krishnan, M. & James, C. 2012 A plasma focus electronic neutron generator. IEEE Trans. Plasma Sci. 40, 10821088.CrossRefGoogle Scholar
Caballero Bendixsen, L.S., Bott-Suzuki, S.C., Cordaro, S.W., Krishnan, M., Chapman, S., Coleman, P. & Chittenden, J. 2016 Axial mass fraction measurements in a 300 kA dense plasma focus. Phys. Plasmas 23 (9), 093112.CrossRefGoogle Scholar
Cazzola, E., Curreli, D. & Lapenta, G. 2018 On magnetic reconnection as promising driver for future plasma propulsion systems. Phys. Plasmas 25, 073512. arXiv:1807.11441.CrossRefGoogle Scholar
Cazzola, E., Curreli, D., Markidis, S. & Lapenta, G. 2016 On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas. Phys. Plasmas 23 (11), 112108. arXiv:1610.09104.CrossRefGoogle Scholar
Chesny, D. 2013 Non-potential magnetic fields and magnetic reconnection in low collisional plasmas: discovery of solar EUV mini-sigmoids and development of novel in-space propulsion systems. PhD thesis, Florida Institute of Technology.Google Scholar
Chesny, D.L. & Orange, N.B. 2018 Method and apparatus for torsional magnetic reconnection. U.S. Patent application, vol. 16/647, 971.Google Scholar
Chesny, D.L. & Orange, N.B. 2020 Conducting-coil assembly for producing three-dimensional magnetic null points. Phys. Rev. Appl. 13 (6), 064019.CrossRefGoogle Scholar
Chesny, D.L., Orange, N.B. & Dempsey, C. 2021 Method for creating a three-dimensional magnetic null point topology with an accurate spine axis. Rev. Sci. Instrum. 92 (5), 054710.CrossRefGoogle ScholarPubMed
Chesny, D.L., Orange, N.B., Oluseyi, H.M. & Valletta, D.R. 2017 Toward laboratory torsional spine magnetic reconnection. J. Plasma Phys. 83, 905830602.CrossRefGoogle Scholar
Dalla, S. & Browning, P.K. 2005 Particle acceleration at a three-dimensional reconnection site in the solar corona. Astron. Astrophys. 436, 11031111.CrossRefGoogle Scholar
Dalla, S. & Browning, P.K. 2006 Jets of energetic particles generated by magnetic reconnection at a three-dimensional magnetic null. Astrophys. J. 640, L99L102.CrossRefGoogle Scholar
Dalla, S. & Browning, P.K. 2008 Particle trajectories and acceleration during 3D fan reconnection. Astron. Astrophys. 491, 289295. arXiv:0811.1144.CrossRefGoogle Scholar
Ebrahimi, F. 2020 An Alfvenic reconnecting plasmoid thruster. J. Plasma Phys. 86 (6), 905860614. arXiv:2011.04192.CrossRefGoogle Scholar
Edwards, S.J. & Parnell, C.E. 2015 Null point distribution in global coronal potential field extrapolations. Solar Phys. 290, 20552076.CrossRefGoogle Scholar
Egedal, J., Fox, W., Katz, N., Porkolab, M., Reim, K. & Zhang, E. 2007 Laboratory observations of spontaneous magnetic reconnection. Phys. Rev. Lett. 98 (1), 015003.CrossRefGoogle ScholarPubMed
Esaulov, A., Bauer, B.S., Lindemuth, I.R., Makhin, V., Presura, R., Ryutov, D.D., Sheehey, P.T., Siemon, R.E. & Sotnikov, V.I. 2004 Magnetohydrodynamic simulation of the inverse-pinch plasma discharge. Phys. Plasmas 11 (4), 15891599. https://doi.org/10.1063/1.1650354.CrossRefGoogle Scholar
Esaulov, A., Makhin, V., Bauer, B.S., Siemon, R., Sotnikov, V., Paraschiv, I., Presura, R., Freeman, B.L., Hagen, E.C., Ziegler, L., Lindemuth, I. & Sheehey, P. 2003 2D MHD computer modeling of dense plasma focus accelerators. In Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472), vol. 1, pp. 78–81.Google Scholar
Fridman, A. & Kennedy, L.A. 2004 Plasma Physics and Engineering. Taylor & Francis.CrossRefGoogle Scholar
Galsgaard, K., Priest, E.R. & Titov, V.S. 2003 Numerical experiments on wave propagation towards a 3D null point due to rotational motions. J. Geophys. Res. (Space Phys.) 108, 1042.CrossRefGoogle Scholar
Gascoyne, A. 2015 Dynamics of charged particle motion in the vicinity of three dimensional magnetic null points: energization and chaos. Phys. Plasmas 22, 032907.CrossRefGoogle Scholar
Gonzalez, J.H., Clausse, A., Bruzzone, H. & Florido, P.C. 2004 A lumped parameter model of plasma focus. IEEE Trans. Plasma Sci. 32 (3), 13831391.CrossRefGoogle Scholar
Gonzalez, W. & Parker, E. 2016 Magnetic Reconnection: Concepts and Applications. Astrophysics and Space Science Library (ASSL), vol. 427.Google Scholar
Goodzeit, C.L., Meinke, R.B. & Ball, M. 2005 Concentric tilted double-helix dipoles and higher-order multipole magnets. U.S. Patent. Vol. US 6921042 B1, 10/067, 487.Google Scholar
Heo, H. & Park, D.K. 2002 Measurement of argon ion beam and X-ray energies in a plasma focus discharge. Phys. Scr. 65, 350355.CrossRefGoogle Scholar
Homma, Y., Hoshino, K., Tokunaga, S., Yamoto, S., Hatayama, A., Asakura, N., Sakamoto, Y. & Tobita, K. 2018 An extended kinetic model for the thermal force on impurity particles in weakly collisional plasmas. Contrib. Plasma Phys. 58 (6–8), 629637.CrossRefGoogle Scholar
Hosseinpour, M. 2014 a Test particle acceleration in torsional fan reconnection. Mon. Not. R. Astron. Soc. 445, 24762483.CrossRefGoogle Scholar
Hosseinpour, M. 2014 b Test particle acceleration in torsional spine magnetic reconnection. Astrophys. Space Sci. 353, 379387.CrossRefGoogle Scholar
Hosseinpour, M. 2015 Accelerated jets of energetic protons generated by torsional fan reconnection. Astrophys. Space Sci. 358, 17.CrossRefGoogle Scholar
Hosseinpour, M., Mehdizade, M. & Mohammadi, M.A. 2014 Comparison of test particle acceleration in torsional spine and fan reconnection regimes. Phys. Plasmas 21 (10), 102904.CrossRefGoogle Scholar
Howes, G.G. 2018 Laboratory space physics: investigating the physics of space plasmas in the laboratory. Phys. Plasmas 25, 055501. arXiv:1802.04154.CrossRefGoogle Scholar
Ji, H., et al. 2014 FLARE (facility for laboratory reconnection experiments): a major next-step for laboratory studies of magnetic reconnection. In AGU Fall Meeting Abstracts, abstract id.SM13A-4147.Google Scholar
Ji, H., et al. 2019 Major scientific challenges and opportunities in understanding magnetic reconnection and related explosive phenomena throughout the universe. Bull. Am. Astron. Soc. 51 (3), 5.Google Scholar
Ji, H. & Daughton, W. 2011 Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18 (11), 111207. https://doi.org/10.1063/1.3647505.CrossRefGoogle Scholar
Ji, H., Yamada, M., Hsu, S. & Kulsrud, R. 1998 Experimental test of the sweet-parker model of magnetic reconnection. Phys. Rev. Lett. 80, 32563259.CrossRefGoogle Scholar
Kallenrode, M.-B. 2004 Space Physics: An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. Springer.CrossRefGoogle Scholar
Krishnan, M. 2012 The dense plasma focus: a versatile dense pinch for diverse applications. IEEE Trans. Plasma Sci. 40 (12), 31893221.CrossRefGoogle Scholar
Krishnan, M. & Thompson, J. 2010 Dense plasma focus apparatus. U.S. Patent. Vol. US 7, 679025 B1, 11/057, 040.Google Scholar
Kwek, K.H., Tou, T.Y. & Lee, S. 1990 Current sheath structure of the plasma focus in the run-down phase. IEEE Trans. Plasma Sci. 18 (5), 826830.CrossRefGoogle Scholar
Larson, A.V., Liebing, L. & Dethlefsen, R. 1966 Pulsed coaxial plasma gun accelerators in space thrustor development. Technical Report NASA-CR-54710 Vol. GD/C-DBE-65-026, 19670001436.Google Scholar
Lee, S. 1983 An energy-consistent snow-plough model for pinch design. J. Phys. D Appl. Phys. 16, 24632469.CrossRefGoogle Scholar
Lee, S. & Serban, A. 1996 Dimensions and lifetime of the plasma focus pinch. IEEE Trans. Plasma Sci. 24, 11011105.Google Scholar
Levin, G.A., Barnes, P.N., Murphy, J., Brunke, L., Long, J.D., Horwath, J. & Turgut, Z. 2008 Persistent current in coils made out of second generation high temperature superconductor wire. Appl. Phys. Lett. 93 (6), 062504.CrossRefGoogle Scholar
Lieberman, M.A. & Lichtenberg, A.J. 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. Wiley-Interscience.CrossRefGoogle Scholar
Lindberg, L. & Jacobsen, C. 1961 On the amplification of the poloidal magnetic flux in a plasma. Astrophys. J. 133, 1043.CrossRefGoogle Scholar
Liu, W., Berger, T.E., Title, A.M., Tarbell, T.D. & Low, B.C. 2011 Chromospheric jet and growing ”loop” observed by hinode: new evidence of fan-spine magnetic topology resulting from flux emergence. Astrophys. J. 728, 103. arXiv:1012.1897.CrossRefGoogle Scholar
Longcope, D.W. & Parnell, C.E. 2009 The number of magnetic null points in the quiet sun corona. Solar Phys. 254, 5175. arXiv:0811.0097.CrossRefGoogle Scholar
Lukin, V.S. & Linton, M.G. 2011 Three-dimensional magnetic reconnection through a moving magnetic null. Nonlinear Process. Geophys. 18 (6), 871882.CrossRefGoogle Scholar
Mantenieks, M.A. & Myers, R.M. 1993 100-kw class applied-field mpd thrustercomponent wear, Proceedings of the Tenth Symposium on space Nuclear power and propulsion, American Institute of Physics Conference Series, vol. 271 pp. 1317–1325. doi:10.1063/1.43093.CrossRefGoogle Scholar
Marchand, R. 2010 Test-particle simulation of space plasmas. Commun. Comput. Phys. 8 (3), 471483.CrossRefGoogle Scholar
Mason, E.I., Antiochos, S.K. & Viall, N.M. 2019 Observations of solar coronal rain in null point topologies. Astrophys. J. Lett. 874 (2), L33. arXiv:1904.08982.CrossRefGoogle Scholar
McComas, D.J., et al. 2019 Probing the energetic particle environment near the Sun. Nature 576, 223227.CrossRefGoogle ScholarPubMed
Mikellides, P.G. & Turchi, P.J. 2000 Applied-field magnetoplasmadynamic thrusters, part 2: analytic expressions for thrust and voltage. J. Propul. Power 16 (5), 894901. https://doi.org/10.2514/2.5657.CrossRefGoogle Scholar
Mikellides, P.G., Turchi, P.J. & Roderick, N.F. 2000 Applied-field magnetoplasmadynamic thrusters, part 1: numerical simulations using the mach2 code. J. Propul. Power 16 (5), 887893. https://doi.org/10.2514/2.5656.CrossRefGoogle Scholar
Mitrofanov, K.N., Krauz, V.I., Kubes, P., Scholz, M., Paduch, M. & Zielinska, E. 2014 Study of the fine structure of the plasma current sheath and magnetic fields in the axial region of the PF-1000 facility. Plasma Phys. Rep. 40, 623639.CrossRefGoogle Scholar
Myers, R.M., Mantenieks, M.A. & Sovey, J.S. 1990 Geometric effects in applied-field mpd thrusters, 21st International Electric Propulsion Conference, NASA Technical Memorandum 103259, AIAA-90-2669.Google Scholar
Nalewajko, K. 2016 Applying relativistic reconnection to blazar jets. Galaxies 4, 28. arXiv:1609. 01722.CrossRefGoogle Scholar
Nishizuka, N., Hayashi, Y., Tanabe, H., Kuwahata, A., Kaminou, Y., Ono, Y., Inomoto, M. & Shimizu, T. 2012 A laboratory experiment of magnetic reconnection: outflows, heating, and waves in chromospheric jets. Astrophys. J. 756, 152. arXiv:1412.7903.CrossRefGoogle Scholar
Olsen, C.S., Ballenger, M.G., Carter, M.D., Díaz, F.R.C., Giambusso, M., Glover, T.W., Ilin, A.V., Squire, J.P., Longmier, B.W., Bering, E.A. & Cloutier, P.A. 2015 Investigation of plasma detachment from a magnetic nozzle in the plume of the vx-200 magnetoplasma thruster. IEEE Trans. Plasma Sci. 43 (1), 252268.CrossRefGoogle Scholar
Pallister, R., Pontin, D.I. & Wyper, P.F. 2019 Proton acceleration at tearing coronal null-point current sheets. Astron. Astrophys. 622, A207.CrossRefGoogle Scholar
Pariat, E., Dalmasse, K., DeVore, C.R., Antiochos, S.K. & Karpen, J.T. 2016 A model for straight and helical solar jets. II. Parametric study of the plasma beta. Astron. Astrophys. 596, A36. arXiv:1609.08825.CrossRefGoogle Scholar
Park, S., Choe, W., Moon, S.Y. & Yoo, S.J. 2019 Electron characterization in weakly ionized collisional plasmas: from principles to techniques. Adv. Phys. X 4 (1), 1526114.Google Scholar
Parnell, C.E., Neukirch, T., Smith, J.M. & Priest, E.R. 1997 Structure and collapse of three-dimensional magnetic neutral points. Geophys. Astrophys. Fluid Dyn. 84, 245271.CrossRefGoogle Scholar
Parnell, C.E., Smith, J.M., Neukirch, T. & Priest, E.R. 1996 The structure of three-dimensional magnetic neutral points. Phys. Plasmas 3, 759770.CrossRefGoogle Scholar
Petropoulou, M., Sironi, L., Spitkovsky, A. & Giannios, D. 2019 Relativistic magnetic reconnection in electron-positron-proton plasmas: implications for jets of active galactic nuclei. Astrophys. J. 880 (1), 37. arXiv:1906.03297.CrossRefGoogle Scholar
Pontin, D.I. 2011 Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47, 15081522. arXiv:1101.0924.CrossRefGoogle Scholar
Pontin, D.I. 2012 Theory of magnetic reconnection in solar and astrophysical plasmas. Phil. Trans. R. Soc. Lond. Ser. A 370, 31693192. arXiv:1202.4013.Google ScholarPubMed
Pontin, D.I., Al-Hachami, A.K. & Galsgaard, K. 2011 Generalised models for torsional spine and fan magnetic reconnection. Astron. Astrophys. 533, A78. arXiv:1105.2684.CrossRefGoogle Scholar
Pontin, D.I. & Galsgaard, K. 2007 Current amplification and magnetic reconnection at a three-dimensional null point: physical characteristics. J. Geophys. Res. (Space Phys.) 112, 3103. arXiv:astro-ph/0701555.CrossRefGoogle Scholar
Pontin, D.I., Hornig, G. & Priest, E.R. 2004 Kinematic reconnection at a magnetic null point: spine-aligned current. Geophys. Astrophys. Fluid Dyn. 98 (5), 407428.CrossRefGoogle Scholar
Pontin, D.I., Hornig, G. & Priest, E.R. 2005 Kinematic reconnection at a magnetic null point: fan-aligned current. Geophys. Astrophys. Fluid Dyn. 99 (1), 7793.CrossRefGoogle Scholar
Pontin, D.I., Priest, E.R. & Galsgaard, K. 2013 On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys. J. 774, 154. arXiv:1307.6874.CrossRefGoogle Scholar
Priest, E.R. & Pontin, D.I. 2009 Three-dimensional null point reconnection regimes. Phys. Plasmas 16 (12), 122101122101. arXiv:0910.3043.CrossRefGoogle Scholar
Ramachandran, P. & Varoquaux, G. 2011 Mayavi: 3D visualization of scientific data. Comput. Sci. Engng 13 (2), 4051.CrossRefGoogle Scholar
Ryutov, D.D., Drake, R.P. & Remington, B.A. 2000 Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astrophys. J. Suppl. 127 (2), 465468.CrossRefGoogle Scholar
Schaer, S.F. 1994 Coaxial plasma gun in the high-density regime and injection into a helical field. Helvetica Phys. Acta 67 (2), 217218.Google Scholar
Scheuer, J.T., Schoenberg, K.F., Henins, I., Gerwin, R.A., Moses, R.W., Garcia, J.A., Gribble, R.F., Hoyt, R.P., Black, D.C. & Mayo, R.M. 1994 Performance of a quasi-steady, multi megawatt, coaxial plasma thruster. Technical Report NASA-CR-195311 Vol. E-8723, NAS 1.26:195311, 19940028464.Google Scholar
Schmidt, J.B., Sands, B., Scofield, J., Gord, J.R. & Roy, S. 2017 Comparison of femtosecond- and nanosecond-two-photon-absorption laser-induced fluorescence (TALIF) of atomic oxygen in atmospheric-pressure plasmas. Plasma Sour. Sci. Technol. 26 (5), 055004.CrossRefGoogle Scholar
Schwerdtfeger, P. & Nagle, J.K. 2019 2018 table of static dipole polarizabilities of the neutral elements in the periodic table. Molecular Phys. 117 (9-12), 12001225. https://doi.org/10.1080/00268976.2018.1535143.CrossRefGoogle Scholar
Simpson, J., Lane, J., Immer, C. & Youngquist, R. 2001 Simple analytic expressions for the magnetic field of a circular current loop. NASA Tech. Rep. Server 20140002333, 13.Google Scholar
Sovey, J.S., Mantenieks, M.A., Haag, T.W., Raitano, P. & Parkes, J.E. 1989 JANNAF Propulsion Meeting, NASA Technical Memorandum 102021, 19890014149.Google Scholar
Squire, J.P., Carter, M.D., Chang Diaz, F.R., Giambusso, M., Ilin, A.V., Ogilve-Araya, J., Olsen, C.S., Bering, E. & Longmier, B.W. 2013 VASIMR spaceflight engine system mass study and scaling with power. In 33rd International Electric Propulsion Conference, vol. IEPC-2013-149, pp. 1–10.Google Scholar
Srivastava, A.K., Mishra, S.K., Jelınek, P., Samanta, T., Tian, H., Pant, V., Kayshap, P., Banerjee, D., Doyle, J.G. & Dwivedi, B.N. 2019 On the observations of rapid forced reconnection in the solar corona. Astrophys. J. 887 (2), 137.CrossRefGoogle Scholar
Stanier, A., Browning, P. & Dalla, S. 2012 Solar particle acceleration at reconnecting 3D null points. Astron. Astrophys. 542, A47. arXiv:1201.4846.CrossRefGoogle Scholar
Stenzel, R.L. 1999 Whistler waves in space and laboratory plasmas. J. Geophys. Res. 104 (A7), 1437914396.CrossRefGoogle Scholar
Stenzel, R.L. & Urrutia, J.M. 1998 Generation of DC magnetic fields by rectifying nonlinear whistlers. Phys. Rev. Lett. 81 (10), 20642067.CrossRefGoogle Scholar
Stenzel, R.L., Urrutia, J.M. & Griskey, M.C. 1999 Measurements of helicity and reconnection in electron MHD plasmas. Washington DC Am. Geophys. Union Geophys. Monogr. Ser. 111, 179186.Google Scholar
Stenzel, R.L., Urrutia, J.M., Griskey, M.C. & Strohmaier, K.D. 2001 3D EMHD reconnection in a laboratory plasma. Earth Planets Space 53, 553560.CrossRefGoogle Scholar
Stenzel, R.L., Urrutia, J.M., Griskey, M. & Strohmaier, K. 2002 A new laboratory experiment on magnetic reconnection. Phys. Plasmas 9, 19251930.CrossRefGoogle Scholar
Tang, H.-B., Cheng, J., Liu, C. & York, T.M. 2012 a Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell and Monte Carlo collision. II. Investigation of acceleration mechanisms. Phys. Plasmas 19 (7), 073108.CrossRefGoogle Scholar
Tang, H.-B., Cheng, J., Liu, C. & York, T.M. 2012 b Study of applied magnetic field magnetoplasmadynamic thrusters with particle-in-cell code with Monte Carlo collision. I. Computation methods and physical processes. Phys. Plasmas 19 (7), 073107.CrossRefGoogle Scholar
Tang, V., Adams, M.L. & Rusnak, B. 2010 Dense plasma focus Z-pinches for high-gradient particle acceleration. IEEE Trans. Plasma Sci. 38, 719727.CrossRefGoogle Scholar
Thakur, S.C., Adriany, K., Gosselin, J.J., McKee, J., Scime, E.E., Sears, S.H. & Tynan, G.R. 2016 Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device. Rev. Sci. Instrum. 87 (11), 11E513. http://aip.scitation.org/doi/pdf/10.1063/1.4959275.CrossRefGoogle Scholar
Thio, Y.C.F., Eskridge, R., Lee, M., Smith, J., Martin, A., Markusic, E. & Cassibry, J.T 2002 An experimental study of a pulsed electromagnetic plasma accelerator. AIAA-2002-4269, pp. 2–13.CrossRefGoogle Scholar
Threlfall, J., Neukirch, T., Parnell, C.E. & Eradat Oskoui, S. 2015 Particle acceleration at a reconnecting magnetic separator. Astron. Astrophys. 574, A7. arXiv:1410.6465.CrossRefGoogle Scholar
Thurgood, J.O., Pontin, D.I. & McLaughlin, J.A. 2017 Three-dimensional oscillatory magnetic reconnection. Astrophys. J. 844, 2. arXiv:1706.09662.CrossRefGoogle Scholar
Urrutia, J.M., Stenzel, R.L., Griskey, M.C. & Strohmaier, K.D. 2003 Three-dimensional electron magnetohydrodynamic reconnection. III. Energy conversion and electron heating. Phys. Plasmas 10 (7), 28012809.CrossRefGoogle Scholar
Willenborg, D.L. & Hendricks, C.D. 1976 Design and construction of a dense plasma focus device, part 1. Tech. Rep..Google Scholar
Witherspoon, F.D., Case, A., Messer, S.J., Bomgardner, R., Phillips, M.W., Brockington, S. & Elton, R. 2009 A contoured gap coaxial plasma gun with injected plasma armature. Rev. Sci. Instrum. 80 (8), 083506. https://doi.org/10.1063/1.3202136.CrossRefGoogle ScholarPubMed
Wyper, P.F. & Jain, R. 2011 Torsional magnetic reconnection: the effects of localizing the non-ideal ($\eta$J) term. J. Plasma Phys. 77 (6), 843855.CrossRefGoogle Scholar
Wyper, P. & Jain, R. 2010 Torsional magnetic reconnection at three dimensional null points: a phenomenological study. Phys. Plasmas 17, 092902.CrossRefGoogle Scholar
Yamada, M., Ono, Y., Hayakawa, A., Katsurai, M. & Perkins, F.W. 1990 Magnetic reconnection of plasma toroids with cohelicity and counterhelicity. Phys. Rev. Lett. 65, 721724.CrossRefGoogle ScholarPubMed
Yamada, M., Yoo, J., Jara-Almonte, J., Ji, H., Kulsrud, R.M. & Myers, C.E. 2014 Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma. Nature Commun. 5, 4774.CrossRefGoogle ScholarPubMed
Zhong, J.Y., et al. 2016 Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare. Astrophys. J. Suppl. 225 (2), 30.CrossRefGoogle Scholar
Ziemer, J.K. & Choueiri, E.Y. 2001 Scaling laws for electromagnetic pulsed plasma thrusters. Plasma Sour. Sci. Technol. 10, 395405.CrossRefGoogle Scholar
Zweibel, E.G. & Yamada, M. 2016 Perspectives on magnetic reconnection. Proc. R. Soc. Lond. Ser. A 472, 20160479.Google ScholarPubMed