Skip to main content Accessibility help

Stimulated emission from a laser-wiggled electron beam travelling in an electrostatic wave

  • S. H. Kim (a1)


An axial emission process by a relativistic electron beam travelling in a laser beam and an electrostatic wave propagating in the direction antiparallel to the electron-beam direction (‘electric wiggler’), which is different from free-electron two-quantum Stark (FETQS) emission, is identified, and the laser gain through this process is investigated using relativistic quantum kinetics. The transverse a.c. source current for this axial emission is produced by the laser field acting as a classical electromagnetic wave to wiggle the electron in the transverse direction. From the viewpoint of quantum kinematics, this radiation-wiggled one-quantum induced Stark (RWOQIS) emission is exactly the same as FETQS emission in which the equivalent transverse source current needed for the axial emission is due to the intrinsic electron spin angular momentum. However, these two emissions differ in dynamics, since the former is an one-quantum process while the latter is a two-quantum process. It is found that the laser gain by RWOQIS emission increases with the laser intensity when ¦eA0/mc2¦ ≪ 1 and decreases with the inverse of the square of the laser intensity when ¦eA0/mc2¦ ≫ 1, where A0 is the potential amplitude of the laser wave and mc2 is the electron rest energy. This newly found emission is an inherently stimulated one, and does not have a corresponding spontaneous emission.



Hide All
Baranger, M. & Mozer, B. 1961 Phys. Rev. 123, 25.
Elias, L. R., Fairbank, M., Madey, J. M. J., Schwettmann, H. A. & Smith, T. I. 1976 Phys. Rev. Lett. 36, 717.
Feynman, R. P. 1962 Quantum Electrodynamics, p. 4. Benjamin.
Kim, S. H. 1986 J. Plasma Phys. 36, 195 [Corrigendum 41, 577 (1989)].
Kim, S. H. 1988 Physica A 148, 575.
Kim, S. H. 1989 Phys. Lett. 135 A, 39.
Kim, S. H. 1990 Free-Electron Lasers and Applications (ed. Prosnitz, D.). p. 66. SPIE Proceedings, vol. 1227, SPIE-The International Society for Optical Engineering.
Kim, S. H. 1991 a Nuovo Cim. 106 B, 325.
Kim, S. H. 1991 b Intense Microwave and Particle Beams (ed. Brandt, H. E.), p. 620. SPIE Proceedings, vol. 1407, SPIE-The International Society for Optical Engineering.
Kim, S. H. 1991 c Nuovo. Cim. 106 B. 1311.
Kim, S. H. 1992 a J. Phys. Soc. Japan 61, 131.
Kim, S. H. 1992 b J. Plasma Phys. 47, 197.
Kim, S. H. 1992 c J. Plasma Phys. 47, 219.
Kim, S. H. 1992 d Nuovo Cim. 107 B, 605.
Kim, S. H. 1992 e J. Plasma Phys. 47, 505.
Kim, S. H. 1992 f J. Korean Phys. Soc. (in press).
Kim, S. H. 1992 g J. Plasma Phys. (submitted).
Kim, S. H. 1992 h J. Korean Phys. Soc. 25, 206.
Kim, S. H. 1992 i J. Phys. Soc. Japan (submitted).
Kim, S. H. & Chung, H. Y. 1978 J. Appl. Phys. 49, 5081.
Kim, S. H. & Wilhelm, H. E. 1973 J. Appl. Phys. 44, 802.
Madey, J. M. J. 1971 J. Appl. Phys. 42. 1906.
Nambu, M. 1983 Laser and Particle Beams 1, 427.
Nambu, M., Sarma, S. N. & Bujarbarua, S. A. 1990 Phys. Fluids B 2, 302.
Sakurai, J. J. 1967 Advanced Quantum Mechanics. Addison-Wesley.
Sarma, S. N., Sarma, K. K. & Nambu, M. 1991 a J. Plasma Phys. 46, 331.
Sarma, K. K., Sarma, S. N., Nambu, M. & Hada, T. 1991 b Phys. Rev. A 43, 5555.
Seely, J. F. 1973 Ph.D. thesis. Department of Physics, University of Tennessee.
Smith, S. J. & Purcell, E. M. 1953 Phys. Rev. 92, 1069.
Tsytovtch, V. N. & Wilhelmsson, H. 1983 Comments Plasma Phys. Contr. Fusion 7, 181.
Volkov, D. M. 1935 Z. Phys. 94, 250.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Stimulated emission from a laser-wiggled electron beam travelling in an electrostatic wave

  • S. H. Kim (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.