Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T03:54:10.564Z Has data issue: false hasContentIssue false

Solar coronal heating by plasma waves

Published online by Cambridge University Press:  16 June 2009

R. BINGHAM
Affiliation:
Rutherford Appleton Laboratory, Chilton, Oxon, OX11 0QX, UK (bob.bingham@stfc.ac.uk, ps@tp4.ruhr-uni-bochum.de)
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany
B. ELIASSON
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden
L. STENFLO
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden

Abstract

The solar coronal plasma is maintained at temperatures of millions of degrees, much hotter than the photosphere, which is at a temperature of just 6000 K. In this paper, the plasma particle heating based on the kinetic theory of wave–particle interactions involving kinetic Alfvén waves and lower-hybrid drift modes is presented. The solar coronal plasma is collisionless and therefore the heating must rely on turbulent wave heating models, such as lower-hybrid drift models at reconnection sites or the kinetic Alfvén waves. These turbulent wave modes are created by a variety of instabilities driven from below. The transition region at altitudes of about 2000 km is an important boundary chromosphere, since it separates the collision-dominated photosphere/chromosphere and the collisionless corona. The collisionless plasma of the corona is ideal for supporting kinetic wave–plasma interactions. Wave–particle interactions lead to anisotropic non-Maxwellian plasma distribution functions, which may be investigated by using spectral analysis procedures being developed at the present time.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alfvén, H. 1942 Nature 150, 405.CrossRefGoogle Scholar
[2]Bellan, P. M. 1998 Phys. Plasmas 5, 3081.CrossRefGoogle Scholar
[3]Bingham, R., Bryant, D. A. and Hall, D. S. 1984a Geophys. Res. Lett. 11, 327.CrossRefGoogle Scholar
[4]Bingham, R., Bryant, D. A. and Hall, D. S. 1984b Ann. Geophys. 6, 159.Google Scholar
[5]Bingham, R., Shapiro, V. D., Tsytovich, V. N., de Angelis, U., Gilman, M. and Shevchenko, V. I. 1991 Phys. Fluids B 63, 1729.Google Scholar
[6]Bingham, R., Cairns, R. A., Dendy, R. O., Shapiro, V. D., Shukla, P. K. and Stenflo, L. 2001 Phys. Chem. Earth (c), 26, 133.Google Scholar
[7]Bingham, R., Dawson, J. and Shapiro, V. D. 2002 J. Plasma. Phys. 68, 161.CrossRefGoogle Scholar
[8]Brambilla, M. 1988 Kinetic Theory of Plasma Waves: Homogeneous Plasmas. Oxford: Clarendon.Google Scholar
[9]Brodin, G. and Stenflo, L. 1990 Contrib. Plasma Phys. 30, 413.CrossRefGoogle Scholar
[10]Carter, T. A., Brugman, R., Pribyl, P. and Lybarger, W. 2006 Phys. Rev. Lett. 96, 155001.CrossRefGoogle Scholar
[11]Champeaux, G. A. et al. 1997 Astrophys. J. 486, 477.CrossRefGoogle Scholar
[12]Chen, L., Lin, Z. and White, R. 2001 Phys. Plasmas 8, 4731.Google Scholar
[13]Chmyrev, V. M., Bilichenko, S. V., Pokhotelov, O. A., Marchenko, V. A., Lazarev, V. I., Streltsov, A. V. and Stenflo, L. 1988 Phys. Scripta 38, 841.CrossRefGoogle Scholar
[14]Cranmer, S. R., Field, G. B. and Kohl, J. L. 1999 Astrophys. J. 518, 937.CrossRefGoogle Scholar
[15]Cranmer, S. R. 2001 J. Geophys. Res. 106 (A11), 24937.CrossRefGoogle Scholar
[16]Diamond, P. H. and Malkov, M. A. 2006 Astrophys. J. 654, 252.CrossRefGoogle Scholar
[17]Drozdenko, T. and Morales, G. J. 2001 Phys. Plasmas 8, 3265.CrossRefGoogle Scholar
[18]Edwin, P. M. and Murawski, K. 1995 Sol. Phys. 158, 227.CrossRefGoogle Scholar
[19]Feldman, U. and Landi, E. 2008 Plasma Phys. 15, 056501.CrossRefGoogle Scholar
[20]Gekelman, W. 1999 J. Geophys. Res. 104, 14417.CrossRefGoogle Scholar
[21]Gary, S. P., Skoug, R. M. and Smith, C. W. 2005 Plasma Phys. 12, 056501.CrossRefGoogle Scholar
[22]Harrison, R. A. 1997 Sol. Phys. 175, 467.CrossRefGoogle Scholar
[23]Hasegawa, A. and Chen, L. 1976 Phys. Fluids 19, 1924.CrossRefGoogle Scholar
[24]Hasegawa, A. and Mima, K. 1978 J. Geophys. Res. 83, 1117.CrossRefGoogle Scholar
[25]Hasegawa, A. and Uberoi, C. 1982 The Alfvén wave. DOE/TIC Rep. No. 11197, Technical Center, US Department of Energy, Washington, DC.Google Scholar
[26]Hasegawa, A. 1985 Adv. Phys. 34, 1.CrossRefGoogle Scholar
[27]Jovanovic, D., Pegoraro, F. and Rasmussen, J. J. 1998 J. Plasma Phys. 60, 383.CrossRefGoogle Scholar
[28]Kellett, B. J. and Tsikoudi, V. 1997 Mon. Not. R. Astron. Soc. 288, 411.CrossRefGoogle Scholar
[29]Kletzing, C. A. et al. 2003 Phys. Rev. Lett. 90, 035004.CrossRefGoogle Scholar
[30]Klimchuck, J. A. 2006 Sol. Phys. 234, 41.CrossRefGoogle Scholar
[31]Laing, G. B. and Edwin, P. M. 1995 Sol. Phys. 161, 269.CrossRefGoogle Scholar
[32]Lampe, M. and Papadopoulos, K. 1977 Appl. Phys. J. 212, 886, 977.Google Scholar
[33]Li, X. 2002 Astrophys. J. 571, L67.CrossRefGoogle Scholar
[34]McChesney, J. M., Stern, R. A. and Bellan, P. M. 1987 Phys. Rev. Lett. 59, 1436.CrossRefGoogle Scholar
[35]McKenzie, J. E., Banaszkiewicz, M. and Axford, W. I. 1995 Astron. Astrophys. 303, L45.Google Scholar
[36]Mikhailovskii, A. B., Petviashvili, V. I. and Friedman, A. M. 1977 JETP Lett. 24, 43.Google Scholar
[37]Narain, U. and Ulmschneider, P. 1996 Space Sci. Rev. 75, 453.CrossRefGoogle Scholar
[38]Okuda, H. and Dawson, J. M. 1973 Phys. Fluids 16, 408.CrossRefGoogle Scholar
[39]Petviashvili, V. I. and Pokhotelov, O. A. 1992 Solitary Waves in Plasmas and in the Atmosphere. London: Gordon and Breach.Google Scholar
[40]Sagdeev, R. Z., Shapiro, V. D. and Shevchenko, V. I. 1978a Sov. J. Plasma Phys. 4, 306.Google Scholar
[41]Sagdeev, R. Z., Shapiro, V. D. and Shevchenko, V. I. 1978b JETP Lett. 27, 340.Google Scholar
[42]Sarto Del, D., Califano, F. and Pegoraro, F. 2003 Phys. Rev. Lett. 91, 235001.CrossRefGoogle Scholar
[43]Shukla, P. K. 1978 Nature (Lond.) 278, 874.CrossRefGoogle Scholar
[44]Shukla, P. K., Yu, M. Y., Rahman, H. U. and Spatschek, K. H. 1981 Phys. Rev. A 23, 312.Google Scholar
[45]Shukla, P. K. and Dawson, J. M. 1984 Astrophys. J. 276, L49.CrossRefGoogle Scholar
[46]Shukla, P. K. and Stenflo, L. 1985 Phys. Fluids 28, 1576.CrossRefGoogle Scholar
[47]Shukla, P. K., Yu, M. Y. and Stenflo, L. 1986 Phys. Rev. A 34, 3478.CrossRefGoogle Scholar
[48]Shukla, P. K. and Stenflo, L. 1995 Phys. Scripta T60, 32.CrossRefGoogle Scholar
[49]Shukla, P. K., Birk, G. T. and Bingham, R. 1995 Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
[50]Shukla, P. K., Bingham, R. and Dendy, R. O. 1998 Phys. Lett. A 239, 369.CrossRefGoogle Scholar
[51]Shukla, P. K. and Stenflo, L. 1999a Nonlinear MHD Waves and Turbulence (ed. Passot, T. and Sulem, P. L.). Berlin: Springer, pp. 130.Google Scholar
[52]Shukla, P. K. and Stenflo, L. 1999b Phys. Plasmas 6, 4120.CrossRefGoogle Scholar
[53]Shukla, P. K., Stenflo, L. and Bingham, R. 1999 Phys. Plasmas 6, 1677.CrossRefGoogle Scholar
[54]Shukla, P. K., Bingham, R., McKenzie, J. F. and Axford, W. I. 1999 Sol. Phys. 186, 61.CrossRefGoogle Scholar
[55]Shukla, P. K. and Stenflo, L. 2000a J. Plasma Phys. 64, 125.CrossRefGoogle Scholar
[56]Shukla, P. K. and Stenflo, L. 2000b Phys. Plasmas 7, 2738.CrossRefGoogle Scholar
[57]Shukla, P. K. and Stenflo, L. 2000c Phys. Rev. Lett. 85, 2408.CrossRefGoogle Scholar
[58]Shukla, P. K. and Stenflo, L. 2004 Geophys. Res. Lett. 31, L03810.Google Scholar
[59]Shukla, P. K., Stenflo, L., Bingham, R. and Eliasson, B. 2004 Plasma Phys. Control. Fusion 46, B349.CrossRefGoogle Scholar
[60]Shukla, P. K. 2005 Phys. Plasmas 12, 012310.CrossRefGoogle Scholar
[61]Shukla, P. K., Bingham, R., Eliasson, B., Dieckmann, M. and Stenflo, L. 2006 Plasma Phys. Control. Fusion 48, B249.CrossRefGoogle Scholar
[62]Spicer, D. S., Benz, A. O. and Huba, J. D. 1981 Astron. Astrophys. 105, 221.Google Scholar
[63]Stasiewicz, K., Bellan, P., Chaston, C. et al. 2000 Space Sci. Rev. 92, 423.CrossRefGoogle Scholar
[64]Stefant, R. J. 1971 Phys. Fluids 13, 440.CrossRefGoogle Scholar
[65]Sundkvist, D., Krasnoselskikh, V., Shukla, P. K. et al. 2005 Nature (Lond.) 436, 825.CrossRefGoogle Scholar
[66]Trines, R., Bingham, R., Silva, L. O., Mendonca, J. T., Shukla, P. K. and Mori, W. B. 2005 Phys. Rev. Lett. 94, 1650021.CrossRefGoogle Scholar
[67]Trines, R., Bingham, R., Silva, L. O., Mendonca, J. T. and Shukla, P. K. 2007 Phys. Rev. Lett. 99, 205006.CrossRefGoogle Scholar
[68]Tsiklauri, D. 2006 New. J. Phys. 8, 79 43.CrossRefGoogle Scholar
[69]White, R., Chen, L. and Lin, Z. 2002 Phys. Plasmas 9, 1890.CrossRefGoogle Scholar
[70]Whitlam, S., Ashbourne, J. M. A., Bingham, R., Shukla, P. K. and Spicer, D. S. 2002 Sol. Phys. 211, 199.CrossRefGoogle Scholar