Skip to main content Accessibility help
×
Home

Simulation studies of positron acceleration by a shock wave

  • YUKI HARU OHSAWA (a1), K. KATO (a1) and H. HASEGAWA (a2)

Abstract

Using a relativistic electromagnetic particle code, we investigate positron acceleration in a shock wave propagating obliquely to an external magnetic field ${\bf B} _0 $ in an electron–positron–ion plasma. After an encounter with a shock wave, some positrons are reflected and then accelerated along the magnetic field. They stay in the shock transition region and have velocities nearly parallel to ${\bf B} _0 $. Owing to the deformation of the wave profile, the acceleration can become stagnant. However, if the shock speed $v_{\rm sh}$ is close to $c \cos \theta $, where $c$ is the speed of light and $\theta $ is the angle between the wave normal and ${\bf B} _0 $, the acceleration can start again. In this second stage acceleration, three types of motion are found. The first type is the same as that in the first stage. In the second type, particles gain energy from the electric field perpendicular to the magnetic field in association with large-radius gyromotion. The third type of motion resembles the curtate cycloid in the wave frame. We give theoretical estimates for the energy increase in these processes.

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Simulation studies of positron acceleration by a shock wave

  • YUKI HARU OHSAWA (a1), K. KATO (a1) and H. HASEGAWA (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed