Skip to main content Accessibility help

Resonant Weibel instability in counterstreaming plasmas with temperature anisotropies

  • M. LAZAR (a1) (a2), M. E. DIECKMANN (a2) (a3) and S. POEDTS (a1)


The Weibel instability, driven by a plasma temperature anisotropy, is non-resonant with plasma particles: it is purely growing in time, and does not oscillate. The effect of a counterstreaming plasma is examined. In a counterstreaming plasma with an excess of transverse temperature, the Weibel instability arises along the streaming direction. Here it is proved that for large wave-numbers the instability becomes resonant with a finite real (oscillation) frequency, ωr ≠ 0. When the plasma flows faster, with a bulk velocity larger than the parallel thermal velocity, the instability becomes dominantly resonant. This new feature of the Weibel instability can be relevant for astrophysical sources of non-thermal emissions and the stability of counterflowing plasma experiments.



Hide All
[1]Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.
[2]Fried, B. D. 1959 Phys. Fluids 2, 337.
[3]Kalman, G., Montes, C. and Quemada, D. 1968 Phys. Fluids 11, 1797.
[4]Davidson, R. C., Hammer, D. A., Haber, I. and Wagner, C. E. 1972 Phys. Fluids 15, 317.
[5]Califano, F., Pegoraro, F., Bulanov, S. V. and Mangeney, A. 1998 Phys. Rev. E 57, 7048.
[6]Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. and Dawson, J. M. 2002 Phys. Plasmas 9, 2458.
[7]Bret, A. 2006 Phys. Lett. A 359, 52.
[8]Rowlands, G., Dieckmann, M. E. and Shukla, P. K. 2007 New J. Phys. 9, 247.
[9]Medvedev, M. and Loeb, A. 1999 Astrophys. J. 526, 697.
[10]Schlickeiser, R. and Shukla, P. K. 2003 Astrophys. J. 599, L57.
[11]Okabe, N. and Hattori, M. 2003 Astrophys. J. 599, 964.
[12]Shukla, P. K. 2003 Phys. Lett. A 313, 274; 2005 341, 184.
[13]Nishikawa, K.-I., Hardee, P., Richardson, G., Preece, R., Sol, H. and Fishman, G. J. 2005 Astrophys. J. 622, 927.
[14]Lazar, M., Schlickeiser, R., Wielebinski, R. and Poedts, S. 2009 Cosmological effects of Weibel-type instabilities. Astrophys. J., 693, 1133.
[15]Bret, A. and Deutsch, C. 2006 Phys. Plasmas 13, 022110.
[16]Califano, F., Cecchi, T. and Chiuderi, C. 2002 Phys. Plasmas 9, 451.
[17]Bret, A., Firpo, M.-C. and Deutsch, C. 2004 Phys. Rev. E 70, 046401.
[18]Lazar, M., Schlickeiser, R. and Shukla, P. K. 2006 Phys. Plasmas 13, 102107; Stockem, A. and Lazar, M. 2008 Phys. Plasmas 15, 014501.
[19]Lazar, M. 2008 Phys. Lett. A 372, 2446.
[20]Lazar, M., Smolyakov, A., Schlickeiser, R. and Shukla, P. K. 2009 J. Plasma Phys. 75, 19.
[21]Fried, B. D. and Conte, S. D. 1961 The Plasma Dispersion Function. New York: Academic Press.
[22]Tzoufras, M., Ren, C., Tsung, F. S., Tonge, J. W., Mori, W. B., Fiore, M., Fonseca, R. A. and Silva, L. O. 2006 Phys. Rev. Lett 96, 105002.
[23]Fiore, M., Silva, L. O., Ren, C., Tzoufras, M. A. and Mori, W. B. 2006 Mon. Not. R. Astron. Soc. 372, 1851.
[24]Ryde, F. 2004 Astrophys. J. 614, 827.
[25]Manheimer, W. 1971 Phys. Fluids 14, 579.
MathJax is a JavaScript display engine for mathematics. For more information see

Resonant Weibel instability in counterstreaming plasmas with temperature anisotropies

  • M. LAZAR (a1) (a2), M. E. DIECKMANN (a2) (a3) and S. POEDTS (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed