Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-21T15:36:43.108Z Has data issue: false hasContentIssue false

Resonant excitation of terahertz surface magnetoplasmons by optical rectification over a rippled surface of n-type indium antimonide

Published online by Cambridge University Press:  25 January 2024

Rohit Kumar Srivastav
Affiliation:
Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida, UP 201309, India
A. Panwar*
Affiliation:
Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida, UP 201309, India
*
Email address for correspondence: apanwar2004@gmail.com

Abstract

We analysed the excitation of a surface magnetoplasmon wave by the mode conversion of a p-polarized laser beam over a rippled semiconductor (n-type)-free space interface. The pump surface magnetoplasmon wave exerts a ponderomotive force on the free electrons in the semiconductor, imparting a linear oscillatory velocity at the laser modulation frequency to them. This linear oscillatory velocity couples with the modulated electron density to produce a current density, which develops a resonant surface magnetoplasmon wave in the terahertz region. The amplitude of the terahertz surface magnetoplasmon wave can be tuneable with an external magnetic field and the semiconductor's temperature.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afsah-Hejri, L., Hajeb, P., Ara, P. & Ehsani, R.J. 2019 A comprehensive review on food applications of terahertz spectroscopy and imaging. Compr. Rev. Food Sci. F. 18 (5), 15631621.Google Scholar
Aoki, K., Savolainen, J. & Havenith, M. 2017 Broadband terahertz pulse generation by optical rectification in gap crystals. Appl. Phys. Lett. 110 (20), 201103.CrossRefGoogle Scholar
Beer, S., Gour, J., Alberucci, A., David, C., Nolte, S. & Zeitner, U.D. 2022 Second harmonic generation under doubly resonant lattice plasmon excitation. Opt. Express 30 (22), 4088440896.Google Scholar
Bhasin, L. & Tripathi, V.K. 2009 Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Phys. Plasmas 16 (10), 103105.Google Scholar
Bhasin, L. & Tripathi, V.K. 2010 Resonant terahertz generation by optical rectification of an amplitude modulated surface plasma wave. IEEE J. Quant. Electron. 46 (6), 965969.Google Scholar
Davidson, A., Petrov, G.M., Rock, B., Grugan, P., Gordon, D., Hafizi, B., Ting, A. & Peñano, J. 2020 Dynamic sheath formation and sub-THz radiation from laser–metal interactions. Phys. Plasmas 27 (7), 073101.Google Scholar
Deepika, , Chauhan, P., Varshney, A., Singh, D. & Sajal, V. 2015 Enhanced absorption of surface plasma wave by metal nano-particles in the presence of external magnetic field. J. Phys. D: Appl. Phys. 48 (34), 345103.Google Scholar
Dong, T., Li, S., Manjappa, M., Yang, P., Zhou, J., Kong, D., Quan, B., Chen, X., Ouyang, C., Dai, F., et al. 2021 Nonlinear THz-nano metasurfaces. Adv. Funct. Mater. 31 (24), 2100463.Google Scholar
Ghazialsharif, M., Dong, J., Abbes, A. & Morandotti, R. 2023 Broadband terahertz metal-wire signal processors: a review. Photonics 10 (1), 48.Google Scholar
Gour, J., Beer, S., Alberucci, A., Zeitner, U.D. & Nolte, S. 2022 Enhancement of third harmonic generation induced by surface lattice resonances in plasmonic metasurfaces. Opt. Lett. 47 (22), 60256028.Google Scholar
Gupta, D.N. 2021 Optical second-harmonic generation of terahertz field from n-type insb semiconductors. Plasmonics 16 (2), 419424.Google Scholar
Gupta, D.N., Gurjar, M.C. & Jain, A. 2023 Terahertz generation by a rotating relativistic electron beam in a magnetized plasma column. J. Plasma Phys. 89 (4), 905890410.Google Scholar
Isgandarov, E., Ropagnol, X., Singh, M. & Ozaki, T. 2021 Intense terahertz generation from photoconductive antennas. Front. Optoelectron. 14 (1), 6493.Google Scholar
Islam, M., Bhowmik, B.K., Dhriti, K., Mohan, D., Ahmad, A. & Kumar, G. 2022 Thin film sensing in a planar terahertz meta-waveguide. J. Opt. 24 (6), 064016.Google Scholar
Jang, D., Sung, J.H., Lee, S.K., Kang, C. & Kim, K.-Y. 2020 Generation of 0.7 mj multicycle 15 THz radiation by phase-matched optical rectification in lithium niobate. Opt. Lett. 45 (13), 36173620.Google Scholar
Katyba, G.M., Raginov, N.I., Khabushev, E.M., Zhelnov, V.A., Gorodetsky, A., Ghazaryan, D.A., Mironov, M.S., Krasnikov, D.V., Gladush, Y.G., Lloyd-Hughes, J., et al. 2023 Tunable THz flat zone plate based on stretchable single-walled carbon nanotube thin film. Optica 10 (1), 5361.Google Scholar
Kumar, M., Kang, T., Kylychbekov, S., Song, H.S. & Hur, M.S. 2021 Simulation study of phase-matched THz emission from an axially modulated magnetized plasma. Phys. Plasmas 28 (3), 033101.Google Scholar
Kumar, M., Lee, K., Hee Park, S., Uk Jeong, Y. & Vinokurov, N. 2017 Terahertz radiation generation by nonlinear mixing of two lasers in a plasma with density hill. Phys. Plasmas 24 (3), 033104.Google Scholar
Kumar, M., Rajouria, S.K. & KK, M.K. 2013 Effect of pulse slippage on beat wave THz generation in a rippled density magnetized plasma. J. Phys. D: Appl. Phys. 46 (43), 435501.Google Scholar
Kumar, M., Song, H.S., Lee, J., Park, D., Suk, H. & Hur, M.S. 2023 Intense multicycle THz pulses generated by laser-produced nanoplasmas. Sci. Rep. 13, 4233.Google Scholar
Kumar, P., Kumar, M. & Tripathi, V. 2016 a Linear mode conversion of terahertz radiation into terahertz surface magnetoplasmons on a rippled surface of magnetized n-InSb. Opt. Lett. 41 (7), 14081411.Google Scholar
Kumar, S., Singh, R.K. & Sharma, R. 2016 b Strong terahertz generation by optical rectification of a super-gaussian laser beam. Europhys. Lett. 114 (5), 55003.Google Scholar
Lai, W.-H., Li, B., Fu, S.-H. & Lin, Y.-S. 2023 Tunable mems-based terahertz metamaterial for pressure sensing application. Micromachines 14 (1), 169.Google Scholar
Lee, Y.-S., Meade, T., Perlin, V., Winful, H., Norris, T.B. & Galvanauskas, A. 2000 Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl. Phys. Lett. 76 (18), 25052507.Google Scholar
Lewis, R. 2019 A review of terahertz detectors. J. Phys. D: Appl. Phys. 52 (43), 433001.Google Scholar
Liu, C., Kumar, G., Singh, D. & Tripathi, V. 2007 Electron acceleration by surface plasma waves in double metal surface structure. J. Appl. Phys. 102 (11), 113301.Google Scholar
Lu, P.-K., Jiang, X., Zhao, Y., Turan, D. & Jarrahi, M. 2022 Bias-free terahertz generation from a silicon-compatible photoconductive emitter operating at telecommunication wavelengths. Appl. Phys. Lett. 120 (26), 261107.Google Scholar
Malik, H.K. & Singh, D. 2020 Terahertz emission during laser-plasma interaction: effect of electron temperature and collisions. J. Theor. Appl. Phys. 14, 359365.Google Scholar
Manendra, , Singh, K.P., Bhati, R. & Malik, A.K. 2020 Efficient terahertz (THz) generation by nonlinear mixing of bicolor top-hat lasers in hot plasma. Phys. Plasmas 27 (2), 023108.Google Scholar
Peng, Y., Shi, C., Wu, X., Zhu, Y. & Zhuang, S. 2020 Terahertz imaging and spectroscopy in cancer diagnostics: a technical review. BME Front. 2020, 2547609.Google Scholar
Sandeep, S. & Malik, H.K. 2023 Thz generation by a periodic array of a photoconductive antenna of gaas material in the presence of a magnetic field. J. Theor. Appl. Phys. 17 (1), 16.Google Scholar
Sharma, P., Ghotra, H.S. & Kant, N. 2018 Enhanced third harmonic generation by a laser over a ag and n-InSb rippled metallic surface. Laser Phys. 29 (1), 016001.Google Scholar
Shumyatsky, P. & Alfano, R.R. 2011 Terahertz sources. J. Biomed. Opt. 16 (3), 033001.Google Scholar
Singh, R.K., Singh, M., Rajouria, S.K. & Sharma, R. 2017 a High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma. Phys. Plasmas 24 (10), 103103.Google Scholar
Singh, R.K., Singh, M., Rajouria, S.K. & Sharma, R. 2017 b Strong terahertz emission by optical rectification of shaped laser pulse in transversely magnetized plasma. Phys. Plasmas 24 (7), 073114.Google Scholar
Spies, J.A., Neu, J., Tayvah, U.T., Capobianco, M.D., Pattengale, B., Ostresh, S. & Schmuttenmaer, C.A. 2020 Terahertz spectroscopy of emerging materials. J. Phys. Chem. C 124 (41), 2233522346.Google Scholar
Srivastav, R.K. & Panwar, A. 2022 Excitation of terahertz surface magnetoplasmons by nonlinear mixing of two lasers on a rippled surface of magnetized n-InSb. Optik 264, 169363.Google Scholar
Srivastav, R.K. & Panwar, A. 2023 Excitation of terahertz surface magnetoplasmons by nonlinear mixing of laser and its second harmonic on a rippled surface of n type semiconductor. Opt. Quant. Electron. 55 (2), 111.Google Scholar
Tan, L., Guo, Y., Shu, Z. & Xu, K.-D. 2023 Spoof surface plasmon polaritons based on-chip sensor for dielectric detection. Opt. Express 31 (2), 20392048.Google Scholar
Voevodin, V., Bereznaya, S., Sarkisov, Y.S., Yudin, N.N. & Sarkisov, S.Y. 2022 Terahertz generation by optical rectification of 780 nm laser pulses in pure and sc-doped zngep2 crystals. Photonics 9, 863.Google Scholar
Wang, L. 2021 Terahertz imaging for breast cancer detection. Sensors 21 (19), 6465.Google Scholar
Wang, L., Qiu, H., Jin, P., Ge, S., Shen, Z., Hu, W., Li, B., Nakajima, M., Jin, B. & Lu, Y. 2022 Thz generation by optical rectification of femtosecond laser pulses in a liquid crystal. J. Opt. Soc. Am. B 39 (3), A89A93.Google Scholar
Yang, S., Wang, S., Wang, Z., Zhang, P., Xia, Y., Tang, C. & Gong, Y. 2022 Terahertz radiation generated by electron-beam-driven plasma waves in a transverse external magnetic field. Phys. Plasmas 29 (5), 053106.Google Scholar
Yang, Y., Yamagami, Y., Yu, X., Pitchappa, P., Webber, J., Zhang, B., Fujita, M., Nagatsuma, T. & Singh, R. 2020 Terahertz topological photonics for on-chip communication. Nat. Photonics 14 (7), 446451.Google Scholar
Yeh, K.-L., Hoffmann, M., Hebling, J. & Nelson, K.A. 2007 Generation of $10\,\mathrm {\mu }$j ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 90 (17), 171121.Google Scholar
Zhang, Y., Wang, C., Huai, B., Wang, S., Zhang, Y., Wang, D., Rong, L. & Zheng, Y. 2020 Continuous-wave THz imaging for biomedical samples. Appl. Sci. 11 (1), 71.Google Scholar