Skip to main content Accessibility help
×
Home

Radiation reaction induced non-monotonic features in runaway electron distributions

  • E. Hirvijoki (a1), I. Pusztai (a1), J. Decker (a2), O. Embréus (a1), A. Stahl (a1) and T. Fülöp (a1)...

Abstract

Runaway electrons, which are generated in a plasma where the induced electric field exceeds a certain critical value, can reach very high energies in the MeV range. For such energetic electrons, radiative losses will contribute significantly to the momentum space dynamics. Under certain conditions, due to radiative momentum losses, a non-monotonic feature – a ‘bump’ – can form in the runaway electron tail, creating a potential for bump-on-tail-type instabilities to arise. Here, we study the conditions for the existence of the bump. We derive an analytical threshold condition for bump appearance and give an approximate expression for the minimum energy at which the bump can appear. Numerical calculations are performed to support the analytical derivations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Radiation reaction induced non-monotonic features in runaway electron distributions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Radiation reaction induced non-monotonic features in runaway electron distributions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Radiation reaction induced non-monotonic features in runaway electron distributions
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: eero.hirvijoki@chalmers.se

References

Hide All
Abraham, M. 1905 Theorie der Elektrizität, Vol II: Elektromagnetische Theorie der Strahlung. Teubner.
Andersson, F., Helander, P. & Eriksson, L.-G. 2001 Damping of relativistic electron beams by synchrotron radiation. Phys. Plasmas 8 (12), 52215229.
Braams, B. J. & Karney, C. F. F. 1989 Conductivity of a relativistic plasma. Phys. Fluids B 1 (7), 13551368.
Brizard, A. J. 2004 A guiding-center Fokker–Planck collision operator for nonuniform magnetic fields. Phys. Plasmas 11 (9), 44294438.
Cary, J. R. & Brizard, A. J. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81, 693738.
Decker, J., Hirvijoki, E., Embréus, O., Peysson, Y., Stahl, A., Fülöp, T. & Pusztai, I. 2015 Bump formation in the runaway electron tail. Plasma Phys. Control. Fusion (submitted), arXiv:1503.03881.
Decker, J., Peysson, Y., Brizard, A. J. & Duthoit, F.-X. 2010 Orbit-averaged guiding-center Fokker–Planck operator for numerical applications. Phys. Plasmas 17 (11), 112513.
Di Piazza, A., Müller, C., Hatsagortsyan, K. Z. & Keitel, C. H. 2012 Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 11771228.
Dirac, P. A. M. 1938 Classical theory of radiating electrons. Proc. R. Soc. Lond. A 167 (929), 148169.
Ford, G. W. & O’Connell, R. F. 1993 Relativistic form of radiation reaction. Phys. Lett. A 174 (3), 182184.
Hazeltine, R. & Mahajan, S. 2004 Radiation reaction in fusion plasmas. Phys. Rev. E 70, 046407.
Hirvijoki, E., Brizard, A., Snicker, A. & Kurki-Suonio, T. 2013 Monte Carlo implementation of a guiding-center Fokker–Planck kinetic equation. Phys. Plasmas 20 (9), 092505.
Hirvijoki, E., Decker, J., Brizard, A. & Embreus, O. 2015 Guiding-center transformation of the radiation-reaction force in a nonuniform magnetic field. J. Plasma Phys. (submitted).
Landau, L. D. & Lifshitz, E. M. 1975 The Classical Theory of Fields, 4th edn, Course of Theoretical Physics, Vol. 2. Pergamon.
Landreman, M., Stahl, A. & Fülöp, T. 2014 Numerical calculation of the runaway electron distribution function and associated synchrotron emission. Comput. Phys. Commun. 185 (3), 847855.
Littlejohn, R. G. 1983 Variational principles of guiding centre motion. J. Plasma Phys. 29, 111125.
Lorentz, H. A. 1892 La théorie électromagnétique de Maxwell et son application aux corps mouvants. Arch. Nederland Sci. Exactes Nat. 25, 363552.
Pauli, W. 1958 Theory of Relativity. Dover.
Rohrlich, F. 2007 Classical Charged Particles. World Scientific.
Spohn, H. 2000 The critical manifold of the Lorentz–Dirac equation. Europhys. Lett. 50 (3), 287292.
Stahl, A., Hirvijoki, E., Decker, J., Embréus, O. & Fülöp, T. 2015 Effective critical electric field for runaway-electron generation. Phys. Rev. Lett. 114, 115002.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed