Skip to main content Accessibility help
×
Home

Overview of laser-driven generation of electron–positron beams

  • G. Sarri (a1), M. E. Dieckmann (a2), I. Kourakis (a1), A. Di Piazza (a3), B. Reville (a1), C. H. Keitel (a3) and M. Zepf (a1) (a4)...

Abstract

Electron–positron (e–p) plasmas are widely thought to be emitted, in the form of ultra-relativistic winds or collimated jets, by some of the most energetic or powerful objects in the Universe, such as black-holes, pulsars, and quasars. These phenomena represent an unmatched astrophysical laboratory to test physics at its limit and, given their immense distance from Earth (some even farther than several billion light years), they also provide a unique window on the very early stages of our Universe. However, due to such gigantic distances, their properties are only inferred from the indirect interpretation of their radiative signatures and from matching numerical models: their generation mechanism and dynamics still pose complicated enigmas to the scientific community. Small-scale reproductions in the laboratory would represent a fundamental step towards a deeper understanding of this exotic state of matter. Here we present recent experimental results concerning the laser-driven production of ultra-relativistic e–p beams. In particular, we focus on the possibility of generating beams that present charge neutrality and that allow for collective effects in their dynamics, necessary ingredients for the testing pair-plasma physics in the laboratory. A brief discussion of the analytical and numerical modelling of the dynamics of these plasmas is also presented in order to provide a summary of the novel plasma physics that can be accessed with these objects. Finally, general considerations on the scalability of laboratory plasmas up to astrophysical scenarios are given.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Overview of laser-driven generation of electron–positron beams
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Overview of laser-driven generation of electron–positron beams
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Overview of laser-driven generation of electron–positron beams
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: g.sarri@qub.ac.uk

References

Hide All
Arons, J. and Scharlemann, E. T. 1979 Astrophys. J. 231, 854.
Baier, V. N. and Katkov, V. M. 2008 Pisma Zh. Eksp. Teor. Fiz. 88 (2), 88.
Battistoni, G. et al. 2007 AIP Conf. Proc. 896, 31.
Begelman, M. C., Blandford, R. D. and Rees, M. D. 1984 Rev. Mod. Phys. 56, 255.
Beresteskii, V. B., Lifshitz, E. M. and Pitaevskii, L. P. 2008 Quantum Electrodynamics. Oxford: Butterworth-Heinemann.
Berezhiani, V. I., Tskhakaya, D. D. and Shukla, P. K. 1992 Phys. Rev. A 46, 6608.
Blandford, R. D. and Znajek, R. L. 1977 MNRAS 179, 433.
Blue, B. E. et al. 2003 Phys. Rev. Lett. 90, 214801.
Brainerd, J. J. 2000 Astrophys. J. 538, 628.
Bret, A., Dieckmann, M. E. and Deutsch, C. 2006 Phys. Plasmas 13, 082109.
Bret, A., Gremillet, L., Benisti, D. and Lefebvre, E. 2008 Phys. Rev. Lett. 100, 205008.
Bret, A., Gremillet, L. and Dieckmann, M. E. 2010 Phys. Plasmas 17, 120501.
Bret, A., Stockem, A., Narayan, R. and Silva, L. O. 2014 Phys. Plasmas 21, 072301.
Bret, A. et al. 2013 Phys. Plasmas 20, 042102.
Burns, M. L. 1983 Positron-Electron Pairs in Astrophysics (ed. Burns, M. L., Harding, A. K. and Ramaty, R.). New York: American Institute of Physics, pp. 281.
Cattaert, T., Kourakis, I. and Shukla, P. K. 2005 Phys. Plasmas 12 (1), 012319.
Chen, H., Wilks, S., Bonlie, J., Liang, E., Myatt, J., Price, D., Meyerhofer, D. and Beiersdorfer, P. 2009a Phys. Rev. Lett. 102, 105001
Chen, H. et al. 2009b Phys. Plasmas 16, 122702.
Chen, H. et al. 2010 Phys. Rev. Lett. 105, 015003.
Chen, H. et al. 2014 Phys. Plasmas 21, 040703.
Clayton, C. E. et al. 2010 Phys. Rev. Lett. 105, 105003.
Connor, J. W. and Taylor, J. B. 1977 Nuclear Fusion 17, 1047.
Cross, J. E., Reville, B. and Gregori, G. 2014 ApJ, 795, 59.
Dawson, J. M. 1983 Rev. Mod. Phys. 55, 403.
Dieckmann, M. E., Frederiksen, J. T., Bret, A. and Shukla, P. K. 2006 Phys. Plasmas 13, 112110.
Dieckmann, M. E., Shukla, P. K. and Stenflo, L. 2009 Plasma Phys. Control. Fusion 51, 065015.
Di Piazza, A., Müller, C., Hatsagortsyan, K. Z. and Keitel, C. H. 2012 Rev. Mod. Phys. 84, 1177.
Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Rev. Mod. Phys. 81, 1229.
Esfandyari-Kalejahi, A., Kourakis, I., Mehdipoor, M. and Shukla, P. K. 2006a J. Phys. A: Math. Gen. 39, 13817.
Esfandyari-Kalejahi, A., Kourakis, I. and Shukla, P. K. 2006b Phys. Plasmas 13, 122310/1–9.
Fiore, M., Silva, L. O., Ren, C., Tzoufras, M. A. and Mori, W. B. 2006 Mon. Not. R. Astron. Soc. 372, 1851.
Gahn, C., Tsakiris, G. D., Pretzler, G., Witte, K. J., Delfin, C., Wahlstrom, C.-G. and Habs, D. 2000 Appl. Phys. Lett. 77, 2662.
Gahn, C., Tsakiris, G. D., Pretzler, G., Witte, K. J., Thirolf, P., Habs, D., Delfin, C. and Wahlstrom, C.-G. 2002 Phys. Plasmas 9, 987.
Gibbon, P., Beg, F. N., Clark, E. L., Evans, R. G. and Zepf, M. 2004 Phys. Plasmas 11, 4032.
Gibbons, G. W., Hawking, S. W. and Siklos, S. 1983 The Very Early Universe. Cambridge: Cambridge University Press.
Ginzburg, V. L. 1971 Sov. Phys. Usp. 14, 83
Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.
Greaves, R. G., Tinkle, M. D. and Surko, C. M. 1994 Phys. Plasmas 1, 1439.
Hasegawa, H. and Ohsawa, Y. J. 2004 Phys. Soc. Japan 73 (7), 1764.
Hatakeyama, R. and Oohara, W. 2005 Phys. Scr. 116, 101.
Heitler, W. 1954 The Quantum Theory of Radiation. Oxford: Clarendon Press.
Helander, P. and Ward, D. J. 2003 Phys. Rev. Lett. 90, 135004.
Hooker, C. J. et al. 2006 J. Physique IV 133, 673.
Hoshino, M., Arons, J., Gallant, Y. A. and Langdon, A. B. 1992 Astrophys. J. 390, 454.
Iwamoto, N. 1993 Phys. Rev. E 47, 604.
Jaroschek, C. H., Lesch, H. and Treumann, R. A. 2004 Astrophys. J. 616, 1065.
Jaroschek, C. H., Lesch, H. and Treumann, R. A. 2005 Astrophys. J. 618, 822.
Jehan, N., Salahuddin, M., Saleem, H. and Mirza, A. M. 2008 Phys. Plasmas 15, 092301.
Kazimura, Y., Sakai, J. I., Neubert, T. and Bulanov, S. V. 1998 Astrophys. J. 498, L183.
Keenan, B. D. and Medvedev, M. V. 2013 Phys. Rev. E 88, 013103.
Kennel, C. F. and Coroniti, F. V. 1984 Astrophys. J. 283, 710.
Kirk, J. G., Lyubarsky, Y. and Petri, J. 2009 The Theory of Pulsar Winds and Nebulae, Astrophysics and Space Science Library, 357, 421450.
Kirk, J. G. and Reville, B. 2010 Astrophys. J. 710, L16.
Koch, H. W. and Motz, J. 1959 Rev. Mod. Phys. 31, 920.
Komissarov, S. S. and Barkov, M. V. 2009 MNRAS 397, 1153.
Kourakis, I., Esfandyari-Kalejahi, A., Mehdipoor, M. and Shukla, P. K. 2006 Phys. Plasmas 13 (5), 052117.
Kourakis, I., Moslem, W. M., Abdelsalam, U. M., Sabry, R. and Shukla, P. K. 2009 Plasma Fusion Res. 4, 018.
Kourakis, I. and Saini, N. S. 2010 J. Plasma Phys. 76 (3–4), 607.
Kourakis, I. and Shukla, P. K. 2005 Nonlinear Process. Geophys. 12, 407.
Kourakis, I., Verheest, F. and Cramer, N. 2007 Phys. Plasmas 14 (2), 022306.
Krall, J. et al. 1993 Phys. Rev. E 48, 2157.
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics, New York: McGraw-Hill, pp. 9.
Kruer, W. L. and Estabrook, K. 1985 Phys. Fluids 28, 430.
Langdon., A. B. 1980 Phys. Rev. Lett. 44, 575.
Lazarus, I. J., Bharuthram, R. and Hellberg, M. A. 2008 J. Plasma Phys. 74, 519.
Leemans, W. P. et al. 2006 Nature Phys. 2, 696.
Leemans, W. P. et al. 2014 Phys. Rev. Lett. 113, 245002.
Lemoine, M. and Pelletier, G. 2011 Mon. Not. R. Astron. Soc. 417, 1148.
Lemoine, M., Pelletier, G., Gremillet, L. and Plotnikov, I. 2014 Mon. Not. R. Astron. Soc. 440, 1365.
Levinson, A. et al. 2005 Astrophys. J. 631, 456.
Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887
Lobet, M., Ruyer, C., Debayle, A., d'Humières, E., Grech, M., Lemoine, M. and Gremillet, L. 2014 Phys. Rev. Lett., submitted.
Macchi, A., Borghesi, M. and Passoni, M. 2013 Rev. Mod. Phys. 85, 751.
Manchester, R. N. and Taylor, J. H. 1977 Pulsars. San Francisco: Freeman.
Medvedev, M. V. and Loeb, A. 1999 Astrophys. J. 526, 697.
Meszaros, P. and Rees, M. J. 1992 MNRAS 257, 29P.
Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.
Michel, F. C. 1991 Theory of neutron Star Magnetospheres. Chicago: University of Chicago Press.
Pulsars: Problems and Progress (Astrophysical Society of the Pacific Conference Series 105), (ed. Johnston, S., Walker, M. A. and Bailes, M.) San Francisco: ASP, 1996.
Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer-Verlag, pp. 202.
Milosavljevic, M. and Nakar, E. 2006 Astrophys. J. 641, 978.
Milosavljevic, M., Nakar, E. and Spitkovsky, A. 2006 Astrophys. J. 637, 765.
Muggli, P. et al. 2013 ArXiv:1306.4380v1.
Nagata, K., Hoshino, M., Jaroschek, C. H. and Takabe, H. 2008 Astrophys. J. 680, 627.
Ng, J. S. T. et al. 2001 Phys. Rev. Lett. 87, 244801
Nishikawa, K. I., Hardee, P., Richardson, G., Preece, R., Sol, H. and Fishman, G. J. 2005 Astrophys. J. 622, 927.
Nishikawa, K. I. et al. 2009 Astrophys. J. 698, L10.
Oohara, W., Date, D. and Hatakeyama, R. 2005 Phys. Rev. Lett. 95, 175003.
Oohara, W. and Hatakeyama, R. 2003 Phys. Rev. Lett. 91, 205005.
Piran, T. 2004 Rev. Mod. Phys. 76, 1143.
Polomarov, O., Kaganovich, I. and Shvets, G. 2008 Phys. Rev. Lett. 101, 175001.
Potier, J. P. and Rinolfi, L. 1998 Proc. 6th European Particle Accelerator Conference, Stockholm, Sweden, pp. 859–861.
Pukhov, A., Sheng, Z.-M. and Meyer-ter-Vehn, J. 1999 Phys. Plasmas 6, 2847.
Reville, B. and Kirk, J. G. 2010 Astrophys. J. 715, 186.
Rossi, B. 1952 High-Energy Particles. New York: Prentice-Hall.
Ruderman, M. A. and Sutherland, P. G. 1975 Astrophys. J. 196, 51.
Ruderman, M. A. and Sutherland, P. G. 1975 Astrophys. J. 196, 51.
Ryutov, D. et al. 1999 Astrophys. J. 518, 821.
Ryutov, D. et al. 2001 Phys. Plasmas 8, 1804.
Ryutov, D. et al. 2012 Plasma Phys. Control. Fusion 54, 105021.
Sadowski, A. et al. 2014 MNRAS 439, 503.
Sakai, J. and Kawata, T. J. 1980 Phys. Soc. Japan 49, 753.
Sakai, J., Nakayama, T., Kazimura, Y. and Bulanov, S. 2000 J. Phys. Soc. Japan 69, 2503.
Salahuddin, M., Saleem, H. and Saddiq, M. 2002 Phys. Rev. E 66, 036407.
Saleem, H., Vranjes, J. and Poedts, S. 2006 Phys. Lett. A 350, 375.
Sarri, G. et al. 2013a Plasma Phys. Control. Fusion 55, 124017.
Sarri, G. et al. 2013b Phys. Rev. Lett. 110, 255002.
Sarri, G. et al. 2015 Nat. Comm 6, 6747.
Schamel, H. 2008 J. Plasma Phys. 74, 725.
Schamel, H. and Luque, A. 2005 New J. Phys. 7, 69.
Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B. and Medvedev, M. V. 2003 Astrophys. J. 596, L121.
Sironi, L. and Spitkovsky, A. 2009 Astrophys. J. 698, 1523.
Sironi, L. and Spitkovsky, A. 2011 Astrophys. J. 741, 39.
Sprangle, P. et al. 1987 IEEE Trans. Plasma. Sci. PS–15, 145.
Stewart, G. A. and Laing, E. W. 1992 J. Plasma Phys. 47, 295.
Stix, Th. 1992 Waves in Plasmas, New York: American Institute of Physics, pp. 6 and 26.
Sturrock, P. A. 1971 Astrophys. J. 164, 529.
Surko, C. M., Levelhal, M., Crane, W. S., Passne, A. and Wysocki, F. 1986 Rev. Sci. Instrum 57, 1862.
Surko, C.M. and Murphy, T. 1990 Phys. Fluid B 2, 1372.
Swanson, D. G. 2003 Plasma Waves, Bristol, UK: Institute of Physics, pp. 19.
Timokhin, A. N. and Arons, J. 2013 MNRAS 429, 20.
Tsai, Y. 1974 Rev. Mod. Phys. 46 815.
Tsytovich, V. and Wharton, C. B. 1978 Commun. Plasma Phys. Control. Fusion 4, 91.
Tzoufras, M., Ren, C., Tsung, F. S., Tonge, J. W., Mori, W. B., Fiore, M., Fonseca, R. A., and Silva, L. O. 2006 Phys. Rev. Lett. 96, 105002.
Urry, C. M. and Padovani, P. 1995 Publ. Astron. Soc. Pac. 107, 715.
Verheest, F. 1996 Phys. Lett. A 213, 177.
Verheest, F. 2005 Nonlinear Proc. Geophys. 12, 569.
Verheest, F. 2006 Phys. Plasmas 13, 082301.
Verheest, F. and Cattaert, T. 2004 Phys. Plasmas 11, 3078.
Verheest, F., Cattaert, T., Lakhina, G. S. and Singh, S. V. 2004 J. Plasma Phys. 70 (2), 237.
Vieira, J., Fang, Y., Mori, W. B., Silva, L. O. and Muggli, P. 2012 Phys. Plasmas 19, 063105.
Vranjes, J. and Poedts, S. 2005 Plasma Sources Sci. Technol. 14, 485.
Wang, X. et al. 2013 Nature Commun. 4, 1.
Waxer, L. J. et al. 2005 Opt. Photon. News 16, 30.
Wilks, S. C. and Kruer., L. 1997 IEEE J. Quantum Electron. 33, 1954.
Williams, G. and Kourakis, I. 2013 Phys. Plasmas 20, 122311.
Yan, Y. et al. 2013a Phys. Plasmas 20, 103106.
Yan, Y. et al. 2013b Phys. Plasmas 20, 103114.
Yanovsky, V. et al. 2008 Opt. Express 16, 2109.
Zank, G. P. and Greaves, R. G. 1995 Phys. Rev. E 51, 6079.
Zhang, S. N. 2013 Frontiers Phys. 8, 630.
Zhao, J., Nishikawa, K. and Sakai, J. I. 1994 Phys. Plasmas 1, 103.
Zhao, J., Sakai, J. I. and Nishikawa, K. 1996 Phys. Plasmas 3, 844.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Overview of laser-driven generation of electron–positron beams

  • G. Sarri (a1), M. E. Dieckmann (a2), I. Kourakis (a1), A. Di Piazza (a3), B. Reville (a1), C. H. Keitel (a3) and M. Zepf (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed