Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T05:44:57.264Z Has data issue: false hasContentIssue false

The origin and effect of hemispheric helicity imbalance in solar dynamo

Published online by Cambridge University Press:  05 June 2020

Shangbin Yang*
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Rd., 100101Beijing, P. R. China University of Chinese Academy of Sciences, 100049Beijing, P. R. China Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing, P. R. China
V. V. Pipin
Affiliation:
Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033, Russia
D. D. Sokoloff
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Rd., 100101Beijing, P. R. China Department of Physics, Moscow University, 119992Moscow, Russia IZMIRAN, 108840, Moscow, Russia
K. M. Kuzanyan
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Rd., 100101Beijing, P. R. China IZMIRAN, 108840, Moscow, Russia
Hongqi Zhang
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Rd., 100101Beijing, P. R. China
*
Email address for correspondence: yangshb@nao.cas.cn

Abstract

In this paper we study the effects of the net magnetic helicity density on the hemispheric symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes into account the nonlinear effect of magnetic helicity conservation. We find that, on the surface, the net magnetic helicity follows the evolution of the parity of the large-scale magnetic field. Random fluctuations of the $\unicode[STIX]{x1D6FC}$-effect and the helicity fluxes can invert the causal relationship, i.e. the net magnetic helicity or the imbalance of magnetic helicity fluxes can drive the magnetic parity breaking. We also found that evolution of the net magnetic helicity of the small-scale fields follows the evolution of the net magnetic helicity of the large-scale fields with some time lag. We interpret this as an effect of the difference of the magnetic helicity fluxes out of the Sun from the large and small scales.

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, M. A. & Ruzmaikin, A. 2000 Rate of helicity production by solar rotation. J. Geophys. Res. 105, 1048110490.CrossRefGoogle Scholar
Blackman, E. G. & Brandenburg, A. 2003 Doubly helical coronal ejections from dynamos and their role in sustaining the solar cycle. Astrophys. J. Lett. 584, L99L102.CrossRefGoogle Scholar
Brandenburg, A. 2005 The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539547.CrossRefGoogle Scholar
Brandenburg, A. 2018 Advances in mean-field dynamo theory and applications to astrophysical turbulence. J. Plasma Phys. 84, 735840404.CrossRefGoogle Scholar
Brandenburg, A., Petrie, G. J. D. & Singh, N. K. 2017 Two-scale analysis of solar magnetic helicity. Astrophys. J. 836, 21.CrossRefGoogle Scholar
Cameron, R. H. & Schüssler, M. 2017 An update of Leighton’s solar dynamo model. Astron. Astrophys. 599, A52.CrossRefGoogle Scholar
Charbonneau, P. 2011 Dynamo models of the solar cycle. Living Rev. Solar Phys. 2, 2.Google Scholar
Choudhuri, A. R. & Dikpati, M. 1999 On the large-scale diffuse magnetic field of the sun – II. The contribution of active regions. Solar Phys. 184, 6176.CrossRefGoogle Scholar
Georgoulis, M. K., Rust, D. M., Pevtsov, A. A., Bernasconi, P. N. & Kuzanyan, K. M. 2009 Solar magnetic helicity injected into the heliosphere: magnitude, balance, and periodicities over solar cycle 23. Astrophys. J. Lett. 705, L48L52.CrossRefGoogle Scholar
Guerrero, G., Chatterjee, P. & Brandenburg, A. 2010 Shear-driven and diffusive helicity fluxes in $\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FA}$ dynamos. Mon. Not. R. Astron. Soc. 409, 16191630.CrossRefGoogle Scholar
Hawkes, G. & Yeates, A. R. 2019 Hemispheric injection of magnetic helicity by surface flux transport. Astron. Astrophys. 631, A138.CrossRefGoogle Scholar
Hubbard, A. & Brandenburg, A. 2012 Catastrophic quenching in $\unicode[STIX]{x1D6FC}\unicode[STIX]{x1D6FA}$ dynamos revisited. Astrophys. J. 748, 51.CrossRefGoogle Scholar
Kleeorin, N. & Rogachevskii, I. 1999 Magnetic helicity tensor for an anisotropic turbulence. Phys. Rev. E 59, 67246729.Google ScholarPubMed
Kleeorin, Y., Safiullin, N., Kleeorin, N., Porshnev, S., Rogachevskii, I. & Sokoloff, D. 2016 The dynamics of Wolf numbers based on nonlinear dynamos with magnetic helicity: comparisons with observations. Mon. Not. R. Astron. Soc. 460, 39603967.CrossRefGoogle Scholar
Krause, F. & Rädler, K.-H. 1980 Mean-Field Magnetohydrodynamics and Dynamo Theory. Akademie-Verlag.Google Scholar
Parker, E. 1955 Hydromagnetic dynamo models. Astrophys. J. 122, 293314.CrossRefGoogle Scholar
Pipin, V. V. 2018 Nonkinematic solar dynamo models with double-cell meridional circulation. J. Atmos. Sol.-Terr. Phys. 179, 185201.CrossRefGoogle Scholar
Pipin, V. V. & Kosovichev, A. G. 2018 Does nonaxisymmetric dynamo operate in the sun? Astrophys. J. 867, 145.CrossRefGoogle Scholar
Pipin, V. V. & Kosovichev, A. G. 2019 On the origin of solar torsional oscillations and extended solar cycle. Astrophys. J. 887 (2), 215.CrossRefGoogle Scholar
Pipin, V. V. & Pevtsov, A. A. 2014 Magnetic helicity of the global field in solar cycles 23 and 24. Astrophys. J. 789, 21.CrossRefGoogle Scholar
Pipin, V. V., Pevtsov, A. A., Liu, Y. & Kosovichev, A. G. 2019 Evolution of magnetic helicity in solar cycle 24. Astrophys. J. 877 (2), L36.CrossRefGoogle Scholar
Pipin, V. V., Sokoloff, D. D. & Usoskin, I. G. 2012 Variations of the solar cycle profile in a solar dynamo with fluctuating dynamo governing parameters. Astron. Astrophys. 542, A26.CrossRefGoogle Scholar
Pipin, V. V., Sokoloff, D. D., Zhang, H. & Kuzanyan, K. M. 2013a Helicity conservation in nonlinear mean-field solar dynamo. Astrophys. J. 768, 46.CrossRefGoogle Scholar
Pipin, V. V., Zhang, H., Sokoloff, D. D., Kuzanyan, K. M. & Gao, Y. 2013b The origin of the helicity hemispheric sign rule reversals in the mean-field solar-type dynamo. Mon. Not. R. Astron. Soc. 435, 25812588.CrossRefGoogle Scholar
Singh, N. K., Käpylä, M. J., Brandenburg, A., Käpylä, P., Petri, J., Lagg, A. & Virtanen, I. 2018 Bihelical spectrum of solar magnetic helicity and its evolution. Astrophys. J. 863, 182.CrossRefGoogle Scholar
Sokoloff, D. & Nesme-Ribes, E. 1994 The maunder minimum: a mixed-parity dynamo mode? Astron. Astrophys. 288, 293298.Google Scholar
Stenflo, J. O. 2013 Solar magnetic fields as revealed by stokes polarimetry. Astron. Astrophys. Rev. 21, 66.CrossRefGoogle Scholar
Warnecke, J., Käpylä, P. J., Käpylä, M. J. & Brandenburg, A. 2016 Influence of a coronal envelope as a free boundary to global convective dynamo simulations. Astron. Astrophys. 596, A115.CrossRefGoogle Scholar
Warnecke, J., Rheinhardt, M., Tuomisto, S., Käpylä, P. J., Käpylä, M. J. & Brandenburg, A. 2018 Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars. Astron. Astrophys. 609, A51.CrossRefGoogle Scholar
Yang, S. & Zhang, H. 2012 Large-scale magnetic helicity fluxes estimated from mdi magnetic synoptic charts over the solar cycle 23. Astrophys. J. 758, 61.CrossRefGoogle Scholar
Yoshimura, H. 1975 Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740748.CrossRefGoogle Scholar
Zhang, H., Sakurai, T., Pevtsov, A., Gao, Y., Xu, H., Sokoloff, D. D. & Kuzanyan, K. 2010 A new dynamo pattern revealed by solar helical magnetic fields. Mon. Not. R. Astron. Soc. 402, L30L33.CrossRefGoogle Scholar
Zhang, H. & Yang, S. 2013 Distribution of magnetic helicity flux with solar cycles. Astrophys. J. 763, 105.CrossRefGoogle Scholar