Skip to main content Accessibility help

On Alfvén wave propagation along a circle on dipolar coordinates

  • L. M. B. C. Campos (a1), M. J. S. Silva (a1) and F. Moleiro (a1)


The multipolar representation of the magnetic field has, for the lowest-order term, a magnetic dipole that dominates the far field. Thus the far-field representation of the magnetic field of the Earth, Sun and other celestial bodies is a dipole. Since these bodies consist of or are surrounded by plasma, which can support Alfvén waves, their propagation along dipole magnetic field lines is considered using a new coordinate system: dipolar coordinates. The present paper introduces multipolar coordinates, which are an example of conformal coordinates; conformal coordinates are orthogonal with equal scale factors, and can be extended from the plane to space, for instance as cylindrical or spherical dipolar coordinates. The application considered is to Alfvén waves propagating along a circle, that is a magnetic field line of a dipole, with transverse velocity and magnetic field perturbations; the various forms of the wave equation are linear second-order differential equations, with variable coefficients, specified by a background magnetic field, which is force free. The absence of a background magnetic force leads to a mean state of hydrostatic equilibrium, specified by the balance of gravity against the pressure gradient, for a perfect gas or incompressible liquid. The wave equation is simplified to a Gaussian hypergeometric type in the case of zero frequency, otherwise, for non-zero frequency, an extended Gaussian hypergeometric equation is obtained. The solution of the latter specifies the magnetic field perturbation spectrum, and also, via a polarisation relation, the velocity perturbation spectrum; both are plotted, over half a circle, for three values of the dimensionless frequency.


Corresponding author

Email address for correspondence:


Hide All
Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover.
Alfvén, H. 1942 On the existence of electromagnetic-hydrodynamic waves. Ark. Mat. Astron. Fys. 29B, 17.
Alfvén, H. 1947 Granulation, magneto-hydrodynamic waves, and the heating of the solar corona. Mon. Not. R. Astron. Soc. 107 (2), 211219.
Alfvén, H. 1950 Cosmical Electrodynamics. Clarendon Press–Oxford University Press.
Alfvén, H. & Fälthammar, C.-G. 1963 Cosmical Electrodynamics: Fundamental Principles, 2nd edn. Clarendon Press–Oxford University Press.
Baños, A. Jr. 1955 Magneto-Hydrodynamic waves in incompressible and compressible fluids. Proc. R. Soc. Lond. A 233 (1194), 350366.
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J. et al. 2001 The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19 (10/12), 12071217.
Belyaev, P. P., Polyakov, S. V., Rapoport, V. O. & Trakhtengerts, V. Y. 1990 The ionospheric Alfvén resonator. J. Atmos. Terr. Phys. 52 (9), 781788.
Berezhko, E. G. & Taneev, S. N. 2007 Ion acceleration and Alfvén wave generation at the Earth’s bow shock. Astron. Lett. 33 (5), 346353.
Bromwich, T. J. I’A. 1926 An Introduction to the Theory of Infinite Series, 2nd edn. Macmillan and Company Limited.
Bruno, R. & Carbone, V. 2005 The solar wind as a turbulence laboratory. Liv. Rev. Solar Phys. 2 (1), 4. doi:10.12942/lrsp-2005-4.
Cabannes, H. 1970 Theoretical Magnetofluid Dynamics, Applied Mathematics and Mechanics, vol. 13. Academic Press.
Campos, L. M. B. C. 1977 On the generation and radiation of magneto-acoustic waves. J. Fluid Mech. 81 (3), 529549.
Campos, L. M. B. C. 1983a On magnetoacoustic-gravity waves propagating or standing vertically in an atmosphere. J. Phys. A: Math. Gen. 16 (2), 417437.
Campos, L. M. B. C. 1983b On viscous and resistive dissipation of hydrodynamic and hydromagnetic waves in atmospheres. J. Méc. Théor. Appl. 2 (6), 861891.
Campos, L. M. B. C. 1983c On waves in non-isothermal, compressible, ionized and viscous atmospheres. Solar Phys. 82 (1-2), 355368.
Campos, L. M. B. C. 1987 On waves in gases. Part II. Interaction of sound with magnetic and internal modes. Rev. Mod. Phys. 59 (2), 363463.
Campos, L. M. B. C. 1988a Funções Complexas e Campos Potenciais. Fundação Calouste Gulbenkian.
Campos, L. M. B. C. 1988b On oblique Alfvén waves in a viscous and resistive atmosphere. J. Phys. A: Math. Gen. 21 (13), 29112930.
Campos, L. M. B. C. 1989 On the dissipation of atmospheric Alfvén waves in uniform and non-uniform magnetic fields. Geophys. Astrophys. Fluid Dyn. 48 (4), 193215.
Campos, L. M. B. C. 1992 On the Hall effect on vertical Alfvén waves in an isothermal atmosphere. Phys. Fluids B: Plasma Phys. 4 (9), 29752982.
Campos, L. M. B. C. 1993a Comparison of exact solutions and the phase mixing approximation for dissipative Alfvén waves. Eur. J. Mech. (B/Fluids) 12 (2), 187216.
Campos, L. M. B. C. 1993b Exact and approximate methods for Alfvén waves in dissipative atmospheres. Wave Motion 17 (2), 101112.
Campos, L. M. B. C. 1994 An exact solution for spherical Alfvén waves. Eur. J. Mech. (B/Fluids) 13 (5), 613628.
Campos, L. M. B. C. 1997 Alfvén waves. In Encyclopaedia of Mathematics, pp. 4042. Kluwer Academic.
Campos, L. M. B. C. 1998 On hydromagnetic waves in atmospheres with application to the Sun. Theor. Comput. Fluid Dyn. 10 (1-4), 3770.
Campos, L. M. B. C. 1999 On the viscous and resistive dissipation of magnetohydrodynamic waves. Phys. Plasmas 6 (1), 5765.
Campos, L. M. B. C. 2011 Complex Analysis with Applications to Flows and Fields, 1st edn. CRC Press.
Campos, L. M. B. C. 2014 Generalized Calculus with Applications to Matter and Forces, 1st edn. CRC Press.
Campos, L. M. B. C. & Gil, P. J. S. 1995 On spiral coordinates with application to wave propagation. J. Fluid Mech. 301, 153173.
Campos, L. M. B. C. & Isaeva, N. L. 1992 On vertical spinning Alfvén waves in a magnetic flux tube. J. Plasma Phys. 48 (3), 415434.
Copson, E. T. 1935 An Introduction to the Theory of Functions of a Complex Variable. Clarendon Press–Oxford University Press.
Cowling, T. G. 1957 Magnetohydrodynamics. Interscience.
Dwivedi, N. K., Kumar, S., Kovacs, P., Yordanova, E., Echim, M., Sharma, R. P., Khodachenko, M. L. & Sasunov, Y. 2019 Implication of kinetic Alfvén waves to magnetic field turbulence spectra: Earth’s magnetosheath. Astrophys. Space Sci. 364 (6), 101. doi:10.1007/s10509-019-3592-2.
Ellison, D. C., Möbius, E. & Paschmann, G. 1990 Particle injection and acceleration at earth’s bow shock: comparison of upstream and downstream events. Astrophys. J. 352, 376394.
Fedorov, E., Mazur, N., Pilipenko, V. & Engebretson, M. 2016 Interaction of magnetospheric Alfvén waves with the ionosphere in the Pc1 frequency band. J. Geophys. Res. Space Phys. 121 (1), 321337.
Ferraro, V. C. A. & Plumpton, C. 1958 Hydromagnetic waves in a horizontally stratified atmosphere. Astrophys. J. 127, 459476.
Ferraro, V. C. A. & Plumpton, C. 1966 An Introduction to Magneto-Fluid Mechanics, 2nd edn. Oxford University Press.
Forsyth, A. R. 1956 A Treatise On Differential Equations, 6th edn. Macmillan and Company Limited.
Foukal, P. V. 1990 Solar Astrophysics, 1st edn. Wiley-VCH.
Gordon, B. E., Lee, M. A., Möbius, E. & Trattner, K. J. 1999 Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth’s bow shock revisited. J. Geophys. Res. Space Phys. 104 (A12), 2826328277.
Greifinger, P. 1972 Ionospheric propagation of oblique hydromagnetic plane waves at micropulsation frequencies. J. Geophys. Res. Space Phys. 77 (13), 23772391.
Hollweg, J. V. 1972 Supergranulation driven Alfvén waves in the solar chromosphere and related phenomena. Cosmic Electrodyn. 2, 423444.
Hollweg, J. V. 1978 Alfvén waves in the solar atmosphere. Solar Phys. 56 (2), 305333.
Jackson, J. D. 1975 Classical Electrodynamics, 2nd edn. Wiley.
Kellogg, O. D. 1953 Foundations of Potential Theory. Dover.
Knopp, K. 1990 Theory and Application of Infinite Series. Dover.
Landau, L. D. & Lifshitz, E. M. 1987 The Classical Theory of Fields, 4th edn. Course of Theoretical Physics, vol. 2. Butterworth-Heinemann.
Lee, M. A. 1982 Coupled hydromagnetic wave excitation and ion acceleration upstream of the Earth’s bow shock. J. Geophys. Res. Space Phys. 87 (A7), 50635080.
Leonovich, A. S. & Mazur, V. A. 1991 An electromagnetic field, induced in the ionosphere and atmosphere and on the earth’s surface by low-frequency Alfvén oscillations of the magnetosphere. General theory. Planet. Space Sci. 39 (4), 529546.
Leonovich, A. S. & Mazur, V. A. 1996 Penetration to the Earth’s surface of standing Alfvén waves excited by external currents in the ionosphere. Ann. Geophys. 14 (5), 545556.
Leroy, B. 1980 Propagation of waves in an atmosphere in the presence of a magnetic field. Astron. Astrophys. 91, 136146.
Leroy, B. 1983 Propagation of Alfvén waves in an isothermal atmosphere when the displacement current is not neglected. Astron. Astrophys. 125, 371374.
Lighthill, M. J. 1960 Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Phil. Trans. R. Soc. A 252 (1014), 397430.
Lou, Y.-Q. 1994 Alfvénic disturbances in the equatorial solar wind with a spiral magnetic field. J. Geophys. Res. Space Phys. 99 (A8), 1474714760.
Lysak, R. L. 1997 Propagation of Alfvén waves through the ionosphere. Phys. Chem. Earth 22 (7-8), 757766.
MacMillan, W. D. 1958 The Theory of the Potential. Dover.
McKenzie, J. F. 1994 Interaction between Alfvén waves and a multicomponent plasma with differential ion streaming. J. Geophys. Res. Space Phys. 99 (A3), 41934200.
McKenzie, J. F., IP, W.-H. & Axford, W. I. 1979 The acceleration of minor ion species in the solar wind. Astrophys. Space Sci. 64 (1), 183211.
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids, 1st edn. Cambridge Monographs on Mechanics. Cambridge University Press.
Morse, P. M. & Feshbach, H. 1953 Methods of Theoretical Physics, International Series in Pure and Applied Physics, vol. 1–2. McGraw-Hill.
Nocera, L., Leroy, B. & Priest, E. R. 1984 Phase mixing of propagating Alfvén waves. Astron. Astrophys. 133, 387394.
Nocera, L., Priest, E. R. & Hollweg, J. V. 1986 Nonlinear development of phase-mixed alfvén waves. Geophys. Astrophys. Fluid Dyn. 35 (1-4), 111129.
Oliver, R., Ballester, J. L., Hood, A. W. & Priest, E. R. 1993 Magnetohydrodynamic waves in a potential coronal arcade. Astron. Astrophys. 273, 647658.
Priest, E. R. & Heyvaerts, J. 1983 Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 220234.
Rème, H. et al. 2001 First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19 (10/12), 13031354.
Scholer, M., Kucharek, H. & Trattner, K.-H. 1999 Injection and acceleration of H+ and He2+ at Earth’s bow shock. Ann. Geophys. 17 (5), 583594.
Schwartz, S. J., Cally, P. S. & Bel, N. 1984 Chromospheric and coronal Alfvénic oscillations in non-vertical magnetic fields. Solar Phys. 92 (1–2), 8198.
Stratton, J. A. 1941 Electromagnetic Theory. McGraw-Hill.
Velli, M. 1993 On the propagation of ideal, linear Alfvén waves in radially stratified stellar atmospheres and winds. Astron. Astrophys. 270, 304314.
Whang, Y. C. 1973 Alfvén waves in spiral interplanetary field. J. Geophys. Res. Space Phys. 78 (31), 72217228.
Whittaker, E. T. & Watson, G. N. 1996 A Course of Modern Analysis, 4th edn. Cambridge University Press.
Zhugzhda, Y. D. 1971 Low-frequency oscillatory convection in the strong magnetic field. Cosmic Electrodyn. 2, 267279.
MathJax is a JavaScript display engine for mathematics. For more information see


On Alfvén wave propagation along a circle on dipolar coordinates

  • L. M. B. C. Campos (a1), M. J. S. Silva (a1) and F. Moleiro (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed