Skip to main content Accessibility help

Nonlinear ion–acoustic waves in an inhomogeneous plasma with non-thermal distribution of electrons

  • S. V. Singh (a1)


In the Earth's magnetosphere, the boundary layer regions are the sources for inhomogeneous plasmas and are natural laboratories to study wave phenomena. In these regions, particles distributions also differ from Maxwellian and are found to be non-thermal. Therefore, amplitude of the waves propagating through these regions can vary differently compared to the homogeneous plasmas. In this study, propagation of ion–acoustic waves (IAWs) in an inhomogeneous, warm electron-ion plasma is examined. The electrons are considered to be having non-thermal Cairn's type distribution and ions follow the fluid dynamical equations. Further, inhomogeneity is assumed in equilibrium density of the electrons and ions. The evolution of the nonlinear IAWs is governed by the Korteweg–de Vries (KdV) equation with variable coefficients. Analytical solution of the KdV equation shows that for a cold ion plasma and non-thermal electrons, the amplitude and the width of the nonlinear IAWs decreases and increases, respectively with the inclusion of the non-thermal distribution of electrons. It is interesting to note that nonlinear IAWs in this model can not propagate for whole range of non-thermal parameter, α. The novel result of this study is that for nonlinear IAWs to propagate in the inhomogeneous two component plasma with ions and non-thermal electrons, the non-thermal parameter, α ⩽ 0.155. Results from our study may have impact on the propagation of the IAWs in the boundary layer regions of the Earth's magnetosphere where density inhomogeneities are appreciable.


Corresponding author

Email address for correspondence:


Hide All
Asano, N. 1974 Prog. Theor. Phys. Suppl. 55, 52.
Bougert, J. 2008 Space Sci. Rev. 136, 487.
Cairns, R. A., Mamum, A. A., Bingham, R., Boström, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709.
Chauhan, S. S. and Dahiya, R. P. 1997 Phys. Lett. A 234, 108.
Chauhan, S. S., Dahiya, R. P., Yi, Seungjun and Lonngren, Karl E. 1997 IEEE Trans. Plasma Sci. 25, 1425.
Collis, P. N., Hggstrom, L., Kaila, K. and Rietveld, M. T. 1991 Geophys. Res. Lett. 18, 1031.
Dahiya, R. P., John, P. I. and Saxena, Y. C. 1978 Phys. Lett. A 65, 323.
Das, G. C. and Singh, S. S. 1992 IEEE Trans. Plasma Sci. 20, 13.
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. New York: Academic.
Foster, J. C., del Pozo, C. and Groves, K. 1988 Geophys. Res. Lett. 15, 60.
Garcia, G. and Forme, F. 2006 Ann. Geophys. 24, 2391.
Gell, Y. and Gomberoff, L. 1977 Phys. Lett. A 60, 125.
Hoffman, R. A. 1993 Auroral Plasma Daynamics, Geophysical Monograph, Vol. 80 (ed. Lysak, R. L.). Washington D. C: American Geophysical Union.
Ikezi, H. 1973 Phys. Fluids 16, 1668.
Ikezi, H., Taylor, R. J. and Baker, D. R. 1970 Phys. Rev. Lett. 25, 11.
Imen, K. and Kuehl, H. H. 1987 Phys. Fluids 30, 73.
Jeffery, A. and Kakutani, T. 1972 Soc. Ind. Appl. Math. (SIAM) Rev. 14, 582.
Kuehl, H. H. 1983 Phys. Fluids 26, 1577.
Kuehl, H. H. and Imen, K. 1985 Phys. Fluids 28, 2375.
Kumar, R. and Malik, H. K. 2011 J. Phys. Soc. Japan 80, 044 502.
Kumar, R. and Malik, H. K. 2013 Phys. Plasmas 20, 032 112.
Kumar, R., Malik, H. K. and Singh, K. 2012 Phys. Plasmas 19, 012 114.
Leubner, M. P. 2000 Planet. Space Sci. 48, 133.
Leubner, M. P. 2003 Space Sci. Rev. 107, 369.
Lockwood, M., Bromage, B. J. I., Willis, D. M., Horne, R. B. and St-Maurice, J.-P. 1987 Geophys. Res. Lett. 14, 111.
Ma, Chun-Yu and Summers, D. 1998 Geophys. Res. Letts 25, 40994102.
Malik, H. K. 1995 IEEE Trans. Plasma Sci. 23, 813.
Malik, H. K. 1996 Phys. Rev. E 54, 5844.
Malik, H. K. 2007 Phys. Letts. A 365, 224.
Malik, H. K. 2008 Phys. Plasmas 15, 072 105.
Malik, H. K. and Dahiya, R. P. 1994 Phys. Plasmas 1, 2872.
Marsch, E. and Tu, C.-Y. 2001 J. Geophys. Res. 106, 227.
Menietti, J. D. and Smith, M. F. 1993 J. Geophys. Res. 98, 11 391.
Nishida, Y. 1984 Phys. Fluids 27, 2176.
Nishikawa, K. and Kaw, P. K. 1974 Phys. Lett. 50A, 445.
Popa, G. and Oertl, M. 1983 Phys. Lett. 98A, 110.
Rao, N. N. and Varma, R. K. 1978 Pramana 10, 247.
Rao, N. N. and Varma, R. K. 1979 Phys. Lett. A 70, 9.
Rietveld, M. T., Collis, P. N. and St.-Maurice, J.-P. 1991 J. Geophys. Res. 96, 19 291.
Sagdeev, R. Z. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.). New York: Consultant Bureau.
Sakanaka, P. H. 1972 Phys. Fluids 15, 304.
Shapiro, V. D., Soloviev, G. I., Dawson, J. M. and Bingham, R. 1995 Phys. Plasmas 2, 516.
Singh, D. K. and Malik, H. K. 2006 Phys. Plasmas 13, 082 104.
Singh, S. and Dahiya, R. P. 1989 J. Plasma Physics 41, 185.
Singh, S. V. and Lakhina, G. S. 2004 Nonl. Proc. Geophys. 11, 275.
Tappert, F. 1972 Phys. Fluids 15, 2446.
Tsallis, C. 1988 J. Stat. Phys. 52, 479.
Vasyliunas, V. M. 1968 J. Geophys. Res. 73, 2839.
Verheest, F. and Pillay, S. R. 2008 Phys. Plasmas 15, 013 703.
Vinäs, A. F., Wong, H. K. and Klimas, A. J. 2000 Astrophys. J. 528, 509.
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.
Zabusky, N. J. and Kruskal, M. D. 1965 Phys. Rev. Lett. 15, 240.
Zaslavsky, A., Volokitin, A. S., Krasnoselskikh, V. V., Maksimovic, M. and Bale, S. D. 2010 J. Geophys. Res. 115, A08 103.
Ziebell, L. F., Yoon, P. H., Pavan, J. and Gaelzer, R. 2011 J. Geophys. Res. 116, A03 320.
MathJax is a JavaScript display engine for mathematics. For more information see

Nonlinear ion–acoustic waves in an inhomogeneous plasma with non-thermal distribution of electrons

  • S. V. Singh (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed