Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T01:26:50.049Z Has data issue: false hasContentIssue false

Nonlinear interaction of intense left- and right-hand polarized laser pulse with hot magnetized plasma

Published online by Cambridge University Press:  11 July 2017

M. Abedi-Varaki*
Affiliation:
Department of Physics, University Campus 2, University of Guilan, Rasht, Iran
S. Jafari
Affiliation:
Department of Physics, University of Guilan, Rasht 41335-1914, Iran
*
Email address for correspondence: M_abedi-varaki@phd.guilan.ac.ir

Abstract

In this article, self-focusing of an intense circularly polarized laser pulse in the presence of an external oblique magnetic field in hot magnetized plasma, using Maxwell’s equations and the relativistic fluid momentum equation, is studied. An envelope equation governing the spot size of the laser beam for both of left- and right-hand polarizations has been derived and the effects of the plasma temperature and oblique magnetic field on the electron density distribution of hot plasma with respect to variation of the normalized laser spot size has been investigated. Numerical results depict that in right-hand polarization, self-focusing of the laser pulse along the propagation direction in hot magnetized plasma becomes better and more compressed with increasing $\unicode[STIX]{x1D703}$. Inversely, in left-hand polarization, increase of $\unicode[STIX]{x1D703}$ in an oblique magnetic field leads to enhancement of the spot size and reduction self-focusing. Besides, in the plasma density profile, self-focusing of the laser pulse improves in comparison with no oblique magnetic field. Also it is shown that plasma temperature has a key role in the laser spot size, normalized laser output power and the variation of plasma density.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedi-Varaki, M. & Jafari, S. 2017 Self-focusing and de-focusing of intense left and right-hand polarized laser pulse in hot magnetized plasma: laser out-put power and laser spot-size. Optik-Intl J. Light Electron Opt. CrossRefGoogle Scholar
Amendt, P., Eder, D. C. & Wilks, S. C. 1991 X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589.CrossRefGoogle ScholarPubMed
Benjamin, T. B. & Feir, J. 1967 The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417.CrossRefGoogle Scholar
Borisov, A., Borovskii, A., Korobkin, V., Prokhorov, A., Rhodes, C., Shiryaev, O. & Parsons, D. 1992 Relativistic-ponderomotive self-channelling of intense ultrashort laser pulses in a medium. Sov. Phys. JETP 74, 604.Google Scholar
Boyd, R. W. 2003 Nonlinear Optics. p. 640. Academic.Google Scholar
Burnett, N. & Corkum, P. B. 1989 Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. Am. B 6, 1195.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. 1996 Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483.Google Scholar
Eder, D., Amendt, P., Dasilva, L., London, R., Macgowan, B., Matthews, D., Penetrante, B., Rosen, M., Wilks, S. & Donnelly, T. D. 1994 Tabletop x-ray lasers. Phys. Plasmas 1, 1744.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. 1996 Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. 1997 Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33, 1879.Google Scholar
Eslami, E. & Nami, A. E. 2016 Characteristics of self-focusing of a Gaussian laser pulse under lateral and axial plasma density variations. IEEE Trans. Plasma Sci. 44, 226.CrossRefGoogle Scholar
Fontana, J. & Pantell, R. 1983 A high-energy, laser accelerator for electrons using the inverse Cherenkov effect. J. Appl. Phys. 54, 4285.CrossRefGoogle Scholar
Ghorbanalilu, M. 2012 Axially magnetized electron–positron and electron plasma competition on the self focusing of intense laser beam. Opt. Commun. 285, 669.CrossRefGoogle Scholar
Jha, P., Mishra, R. K., Upadhyay, A. K. & Raj, G. 2007 Spot-size evolution of laser beam propagating in plasma embedded in axial magnetic field. Phys. Plasmas 14, 114504.CrossRefGoogle Scholar
Kant, N., Saralch, S. & Singh, H. 2011 Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika 56, 149.Google Scholar
Khachatrian, A. & Sukhorukov, A. 1971 Some aspects of thermal self-focusing. Opt. Electron. 3, 49.Google Scholar
Krall, N. A., Trivelpiece, A. W. & Gross, R. A. 1973 Principles of plasma physics. Am. J. Phys. 41, 1380.Google Scholar
Kruer, W. L. 1989 The physics of laser plasma interactions. J. Modern Opt. 36 (3), 417420.Google Scholar
Krushelnick, K., Ting, A., Moore, C., Burris, H., Esarey, E., Sprangle, P. & Baine, M. 1997 Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 4047.Google Scholar
Lemoff, B., Yin, G., Gordon, C., Barty, C. & Harris, S. 1996 Femtosecond-pulse-driven 10-Hz 41.8-nm laser in Xe IX. J. Opt. Soc. Am. B 13 (1), 180.CrossRefGoogle Scholar
Max, C. E., Arons, J. & Langdon, A. B. 1974 Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209.CrossRefGoogle Scholar
McKinstrie, C. & Bingham, R. 1992 Stimulated Raman forward scattering and the relativistic modulational instability of light waves in rarefied. Phys. Fluids B 4, 2626.Google Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Louis-Jacquet, M., Malka, G. & Miquel, J. 1995 Experimental demonstration of relativistic self-channelling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 2953.Google Scholar
Mori, W. 1997 The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers. IEEE J. Quantum Electron. 33, 1942.CrossRefGoogle Scholar
Patil, S. D. & Takale, M. V. 2016 Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: effect of light absorption. In International Conference on Condensed Matter and Applied Physics (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. AIP Publishing.Google Scholar
Patil, S., Takale, M., Fulari, V., Gupta, D. & Suk, H. 2013 Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 1.Google Scholar
Perkins, F. & Valeo, E. 1974 Thermal self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 32, 1234.Google Scholar
Rao, N. N., Shukla, P. & Yu, M. 1984 Strong electromagnetic pulses in magnetized. Phys. Fluids 27, 2664.CrossRefGoogle Scholar
Regan, S., Bradley, D., Chirokikh, A., Craxton, R., Meyerhofer, D., Seka, W., Short, R., Simon, A., Town, R. & Yaakobi, B. 1999 Laser–plasma interactions in long-scale-length plasmas under direct-drive national ignition facility conditions. Phys. Plasmas 6, 2072.Google Scholar
Roth, M., Cowan, T., Key, M., Hatchett, S., Brown, C., Fountain, W., Johnson, J., Pennington, D., Snavely, R. & Wilks, S. 2001 Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.Google Scholar
Saedjalil, N. & Jafari, S. 2016 Self-focusing and self-compression of a laser pulse in the presence of an external tapered magnetized density-ramp plasma. High Energy Density Phys. 19, 48.Google Scholar
Shukla, P. 1999 Generation of wakefields by elliptically polarized laser pulses in a magnetized plasma. Phys. Plasmas 6, 1363.Google Scholar
Shukla, P., Bharuthram, R. & Tsintsadze, N. 1988 Fully relativistic filamentation instability of strong electromagnetic radiation in unmagnetized plasmas. Phys. Scr. 38, 578.Google Scholar
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. 1988 Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 2146.Google Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. & Mason, R. J. 1994 Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.Google Scholar
Tajima, T. & Dawson, J. 1979 Laser electron accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Walia, K. & Singh, A. 2011 Comparison of two theories for the relativistic self focusing of laser beams in plasma. Contrib. Plasma Phys. 51, 375.CrossRefGoogle Scholar
Wang, Y. & Zhou, Z. 2011 Propagation characters of Gaussian laser beams in collisionless plasma: effect of plasma temperature. Phys. Plasmas 18, 043101.Google Scholar
Wani, M. A. & Kant, N. 2014 Self-focusing of Hermite–Cosh–Gaussian laser beams in plasma under density transition. Adv. Opt. 2014, 942750.Google Scholar