Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T15:51:00.241Z Has data issue: false hasContentIssue false

New technique in plasma polarimetry: Evolution equations for angular parameters ‘amplitude ratio–phase difference’ of polarization ellipse

Published online by Cambridge University Press:  25 October 2011

YURY A. KRAVTSOV
Affiliation:
Space Research Institute, Profsoyuznaya St. 82/34, Moscow 117997, Russia Physics Department, Maritime University of Szczecin, 1–2 Waly Chrobrego, Szczecin 70–500, Poland (b.bieg@am.szczecin.pl)
JANUSZ CHRZANOWSKI
Affiliation:
Physics Department, Maritime University of Szczecin, 1–2 Waly Chrobrego, Szczecin 70–500, Poland (b.bieg@am.szczecin.pl)
BOHDAN BIEG
Affiliation:
Physics Department, Maritime University of Szczecin, 1–2 Waly Chrobrego, Szczecin 70–500, Poland (b.bieg@am.szczecin.pl)

Abstract

New technique is suggested in plasma polarimetry: Differential equations for angular parameters of polarization ellipse, characterizing the amplitude ratio and the phase difference between orthogonal components of the wave field. Equations for angular variables ‘amplitude ratio–phase difference’ are derived, which allow direct calculation of the parameters of polarization ellipse, omitting solutions for the Stokes vector. The simplest analytical solutions are presented for the pure Faraday and the pure Cotton–Mouton effects. Behavior of angular parameters in the homogeneous and inhomogeneous plasmas is illustrated by numerical modeling in conditions when the Faraday and Cotton–Mouton effects are large enough and comparable in strength.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Born, M. and Wolf, E. 1999 Principles of Optics, 7th edn.Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
[2]Huard, S. 1997 Polarization of Light. Masson, Canada: John Willey.Google Scholar
[3]Kravtsov, Yu. A. 1969 Quasi-isotropic geometrical optics approximation. Sov. Phys.- Doklady 13, 11251127.Google Scholar
[4]Kravtsov, Yu. A., Naida, O. N. and Fuki, A. A. 1996 Waves in weakly anisotropic 3D inhomogeneous media: quasi-isotropic approximation of geometrical optics. Physics-Uspekhi 39, 129154.CrossRefGoogle Scholar
[5]Fuki, A. A., Kravtsov, Yu. A. and Naida, O. N. 1997 Geometrical Optics of Weakly Anisotropic Media. London: Gordon & Breach.Google Scholar
[6]Kravtsov, Yu. A. and Orlov, Yu. I. 1990 Geometrical Optics of Inhomogeneous Media. Berlin, Germany: Springer.CrossRefGoogle Scholar
[7]Kravtsov, Yu. A. 2005 Geometrical Optics in Engineering Physics. Harrow, UK: Alpha Sci. Int.Google Scholar
[8]Czyz, Z. H., Bieg, B. and Kravtsov, Yu. A. 2007 Complex polarization angle: relation to traditional polarization parameters and application to microwave plasma polarimetry. Phys. Let. A 368, 101107.CrossRefGoogle Scholar
[9]Kravtsov, Yu. A., Bieg, B. and Bliokh, K. Yu. 2007 Stokes-vector evolution in a weakly anisotropic inhomogeneous medium. J. Opt. Soc. Am. A 24, 33883396.CrossRefGoogle Scholar
[10]Kravtsov, Yu. A. and Bieg, B. 2010 Double passage of electromagnetic waves through magnetized plasma: approximation of independent normal waves. Centr. Eur.J. Phys. 8, 273282.Google Scholar
[11]Kravtsov, Yu. A. and Bieg, B. 2010 Evolution of complex amplitudes ratio in weakly anisotropic plasma. J. Plasma Phys. 76, 795807.CrossRefGoogle Scholar
[12]Segre, S. E. 1978 The measurement of poloidal magnetic field in a tokamak by the change of polarization of an electromagnetic wave. Plasma Phys. 20, 295307.CrossRefGoogle Scholar
[13]Segre, S. E. 1999 A review of plasma polarimetry – theory and methods. Plasma Phys. Contr. Fusion 41, R57R100.CrossRefGoogle Scholar
[14]Segre, S. E. 2001 New formalism for the analysis of polarization evolution for radiation in a weakly non-uniform, fully anisotropic medium: a magnetized plasma. J. Opt. Soc. Am. A 18, 26012606.CrossRefGoogle Scholar
[15]Allis, W. P., Buchsbaum, S. J. and Bers, A. 1963 Waves in Anisotropic Plasma. Cambridge, MA: MIT Press.Google Scholar
[16]Ginzburg, V. I. 1970 Propagation of Electromagnetic Waves in Plasma. New York: Gordon & Breach.Google Scholar
[17]Popov, M. M. 1969 Eigen-oscillations of multi-mirrors resonators. Vestn. Leningr. Univ. (Bulletin of the Leningrad University) 22, 4454 (in Russian).Google Scholar
[18]Babich, V. M. and Buldyrev, V. S. 1990 Short-Wavelength Diffraction Theory: Asymptotic Methods. Berlin: Springer-Verlag.Google Scholar
[19]Kravtsov, Yu. A. and Chrzanowski, J. 2011 Accuracy of Cotton–Mouton polarimetry in sheared toroidal plasma of circular cross-section. Centr. Eur. J. Phys. 9, 123130.Google Scholar
[20]Kravtsov, Yu. A. and Bieg, B. 2010 Localized plasma polarimetry based on circular modes conversion: theoretical prerequisites and practical limitations. Plasma Phys. Control. Fusion 52, 022001–7.CrossRefGoogle Scholar