Skip to main content Accessibility help
×
Home

Multi-symplectic magnetohydrodynamics

  • G. M. Webb (a1), J. F. McKenzie (a1) (a2) and G. P. Zank (a1) (a3)

Abstract

A multi-symplectic formulation of ideal magnetohydrodynamics (MHD) is developed based on the Clebsch variable variational principle in which the Lagrangian consists of the kinetic minus the potential energy of the MHD fluid modified by constraints using Lagrange multipliers that ensure mass conservation, entropy advection with the flow, the Lin constraint, and Faraday's equation (i.e. the magnetic flux is Lie dragged with the flow). The analysis is also carried out using the magnetic vector potential à where α=Ã⋅dx is Lie dragged with the flow, and B=∇×Ã. The multi-symplectic conservation laws give rise to the Eulerian momentum and energy conservation laws. The symplecticity or structural conservation laws for the multi-symplectic system corresponds to the conservation of phase space. It corresponds to taking derivatives of the momentum and energy conservation laws and combining them to produce n(n−1)/2 extra conservation laws, where n is the number of independent variables. Noether's theorem for the multi-symplectic MHD system is derived, including the case of non-Cartesian space coordinates, where the metric plays a role in the equations.

Copyright

Corresponding author

Email address for correspondence: gmw0002@uah.edu

References

Hide All
Akhmetiev, P. and Ruzmaikin, A. 1995 A fourth order topological invariant of magnetic or vortex lines. J. Geom. Phys. 15, 95101.
Anderson, I. M. 1989 The Variational Bicomplex. Logan, UT: Utah State University. http://www.math.usu.edu/~fgmp/Publications/VB/vb.pdf.
Anderson, I. M. 1992 Introduction to the variational Bi-complex in mathematical aspects of contemporary field theory, Contemp. Math. 132, 5173.
Arnold, V. I. and Khesin, B. A. 1998 Topological Methods in Hydrodynamics. New York, NY: Springer.
Berger, M. A. 1990 Third-order link integrals. J. Phys. Math. Gen. 23, 27872793.
Berger, M. A. and Field, G. B. 1984 The toplological properties of magnetic helicity. J. Fluid Mech. 147, 133148.
Bluman, G. W., Cheviakov, A. F. and Anco, S. 2010 Applications of Symmetry Methods to Partial Differential Equations. New York, NY: Springer.
Bluman, G. W. and Kumei, S. 1989 Symmetries and Differential Equations. New York, NY: Springer.
Bridges, T. J. 1992. Spatial Hamiltonian structure, energy flux and the water-wave problem. Proc. Roy. Soc. London, 439, 297315.
Bridges, T. J. 1997a Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121, 147190.
Bridges, T. J. 1997b A geometric formulation of the conservation of wave action and its implications for signature and classification of instabilities. Proc. Roy. Soc. A 453, 13651395.
Bridges, T. J. 2006 Canonical multi-symplectic structure on the total exterior algebra bundle. Proc. Roy. Soc. London A 462, 15311551.
Bridges, T. J., Hydon, P. E. and Lawson, J. K. 2010, Multi-symplectic structures and the variational bi-complex. Math. Proc. Camb. Phil. Soc., 148, 159178.
Bridges, T. J., Hydon, P. E. and Reich, S. 2005, Vorticity and symplecticity in Lagrangian fluid dynamics. J. Phys. Math. Gen. 38, 14031418.
Bridges, T. J. and Reich, S. 2006 Numerical methods for Hamiltonian PDEs. J. Phys. Math. Gen. 39, 52875320.
Brio, M., Zakharian, A. R. and Webb, G. M. 2010 Numerical time-dependent partial differential equations for scientists and engineers. In: Mathematics in Science and Engineering, Vol. 123, 1st edn. (ed. Chui, C. K.). Philadelphia, PA: Elsevier, pp. 199204.
Calkin, M. G. 1963 An action principle for magnetohydrodynamics. Canad. J. Phys. 41, 22412251.
Chandre, C., de Guillebon, L., Back, A., Tassi, E. and Morrison, P. J. 2013 On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets. J. Phys. Math. Theoret. 46, 125203 (14 pp), doi:10.10.1088/1751-8133/46/12/125203.
Cotter, C. J., Holm, D. D. and Hydon, P. E. 2007 Multi-symplectic formulation of fluid dynamics using the inverse map. Proc. Roy. Soc. Lond. A, 463, 26172687.
Finn, J. H. and Antonsen, T. M. 1985 Magnetic helicity: what is it and what is it good for? Comments Plasma Phys. Contr. Fusion 9 (3), 111.
Finn, J. M. and Antonsen, T. M. 1988 Magnetic helicity injection for configurations with field errors. Phys. Fluids 31 (10), 30123017.
Gordin, V. A. and Petviashvili, V. I. 1987 The gauge of vector potential and Lyapunov stable MHD equilibrium. Soviet J. Plasma Phys. 13 (7), 509511 (English).
Harrison, B. K. and Estabrook, F. B. 1971 Geometric approach to invariance groups and solution of partial differential systems. J. Math. Phys. 12, 653666.
Holm, D. D. and Kupershmidt, B. A. 1983a Poisson brackets and Clebsch representations for magnetohydrodynamics, multi-fluid plasmas and elasticity. Physica D, 6D, 347363.
Holm, D. D. and Kupershmidt, B. A. 1983b Non-canonical Hamiltonian formulation of ideal magnetohydrodynamics. Physica D, 7D, 330333.
Holm, D. D., Marsden, J. E. and Ratiu, T. S. 1998 The Euler-Lagrange equations and semi-products with application to continuum theories. Adv. Math. 137, 181.
Hydon, P. E., 2005 Multi-symplectic conservation laws for differential and differential-difference equations. Proc. Roy. Soc. A 461, 16271637.
Hydon, P. E. and Mansfield, E. L. 2011 Extensions of Noether's second theorem: from continuous to discrete systems Proc. Roy. Soc. A 467, 32063221, doi:10.1098/rspa.2011.0158.
Marsden, J. E. and Shkoller, S. 1999 Multi-symplectic geometry, covariant Hamiltonians and water waves. Math. Proc. Camb. Phil. Soc. 125, 553575.
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid. Mech. 35, 117.
Morrison, P. J. 1982 Poisson brackets for fluids and plasmas. In: Mathematical Methods in Hydrodynamics and Integrability of Dynamical Systems, (eds. Tabor, M. and Treve, Y. M.), AIP Proc. Conf., Vol. 88. New York, NY: American Institute of Physics, pp 1346.
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70 (2), 467521, doi:10.1103/RevModPhys.70.467.
Morrison, P. J. and Greene, J. M. 1980 Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 45, 790794.
Morrison, P. J. and Greene, J. M. 1982 Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics (Errata). Phys. Rev. Lett. 48, 569.
Newcomb, W. A. 1962 Lagrangian and Hamiltonian methods in magnetohydrodynamics. Nucl. Fusion Suppl. Part 2, 451–463.
Padhye, N. S. and Morrison, P. J. 1996a Fluid relabeling symmetry Phys. Lett. A 219, 287292.
Padhye, N. S. and Morrison, P. J. 1996b Relabeling symmetries in hydrodynamics and magnetohydrodynamics. Plasma Phys. Rep. 22, 869877.
Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I. and De Zeeuw, D. 1999 A solution adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284309.
Reich, S. 2000 Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comp. Phys. 57, 473.
Ruzmaikin, A. and Akhmetiev, P. 1994 Topological invariants of magnetic fields and the effect of reconnections. Phys. Plasmas 1 (2), 331338.
Sjöberg, A. and Mahomed, F. M. 2004. Non-local symmetries and conservation laws for one-dimensional gas dynamics equations. Appl. Math. Comput. 150, 379397.
Tur, A. V. and Yanovsky, V. V. 1993. Invariants in dissipationless hydrodynamic media. J. Fluid Mech. 248, 67106 (Cambridge Univ. Press).
Webb, G. M., Burrows, R. H., Ao, X. and Zank, G. P. 2014a Ion acoustic travelling waves. J. Plasma Phys. 80 (2), 147171, doi:10.1017/S0022377813001013, preprint at http://arxiv.org/abs/1312.6406.
Webb, G. M., Dasgupta, B., McKenzie, J. F., Hu, Q. and Zank, G. P. 2014b Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach. J. Phys. Math. and Theoret. 47, 095501 (33 pp), doi:10.1088/1751-8113/49/9/095501, preprint available at http://arxiv.org/abs/1307.1105.
Webb, G. M., Dasgupta, B., McKenzie, J. F., Hu, Q. and Zank, G. P. 2014c Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics II: Noether's theorems and Casimirs. J. Phys. A., Math. Theoret. 47, 095502 (31 pp), doi:10.1088/1751-8113/47/9/095502, preprint available at http://arxiv.org/abs/1307.1038.
Webb, G. M., Hu, Q., McKenzie, J. F., Dasgupta, B. and Zank, G. P. 2014d Advected invariants in MHD and gas dynamics. In: Outstanding Problems in Heliophysics: from Coronal Heating to the Edge of the Heliosphere (eds. Zank, G. P. and Hu, Q.) 12th Annual International Astrophysics Conference, Astronomical Society of the Pacific Conf. Series, Vol. 484. Orem, UT: Astronomical Socieity of the Pacific, pp. 229234.
Webb, G. M., Ko, C. M., Mace, R. L., McKenzie, J. F. and Zank, G. P. 2008, Integrable, oblique travelling waves in charge neutral, two-fluid plasmas. Nonlinear Proc. Geophys. 15, 179208.
Webb, G. M. and Mace, R. L. 2014 Noether's theorems and fluid relabelling symmetries in magnetohydrodynamics and gas dynamics. J. Phys. AMath. Theoret. article No. JPHYSA-101-057, available at http://arxiv.org/abs/1403.3133 (submitted on March 10).
Webb, G. M., McKenzie, J. F., Mace, R. L., Ko, C. M. and Zank, G. P. 2007 Dual variational principles for nonlinear traveling waves in multifluid plasmas. Phys. Plasmas, 4 (8), 082318-082318-17, doi:10.1063/1.2757154.
Webb, G. M., Pogorelov, N. V. and Zank, G. P. 2010 MHD simple waves and the divergence wave. In: Twelfth International Solar Wind Conference, St. Malo, France, AIP Conference Proceedings, Vol. 1216. College Park, MD: AIP, pp. 300303, doi:10.1063/1.3396300.
Webb, G. M. and Zank, G. P. 2009 Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics. J. Phys. Math. Theor. 42, 475205 (23 pp).
Webb, G. M., Zank, G. P., Kaghashvili, E. Kh and Ratkiewicz, R. E. 2005 Magnetohydrodynamic waves in non-uniform flows II: stress energy tensors, conservation laws and lie symmetries. J. Plasma Phys. 71, 811857, doi: 10.1017/S00223778050003740.
Woltjer, L. 1958 On hydromagnetic equilibria. Proc. Nat. Acad. Sci. 44 (9), 833841.
Zakharov, V. E. and Kuznetsov, E. A. 1997 Hamiltonian formalism for nonlinear waves. Phys.-Usp. 40 (11), 10871116.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Multi-symplectic magnetohydrodynamics

  • G. M. Webb (a1), J. F. McKenzie (a1) (a2) and G. P. Zank (a1) (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed